注意
点击 这里 下载完整示例代码
介绍 || 张量 || Autograd || 构建模型 || TensorBoard 支持 || 训练模型 || 模型理解
PyTorch 张量简介¶
创建于: Nov 30, 2021 | 最后更新于: Jan 29, 2025 | 最后验证于: Nov 05, 2024
观看下面的视频或在 YouTube 上观看。
张量是 PyTorch 中的核心数据抽象。这个交互式 Notebook 深入介绍了 torch.Tensor
类。
首先,我们先导入 PyTorch 模块。我们还将添加 Python 的 math 模块以方便一些示例。
import torch
import math
创建张量¶
创建张量最简单的方法是使用 torch.empty()
调用
x = torch.empty(3, 4)
print(type(x))
print(x)
<class 'torch.Tensor'>
tensor([[9.7006e+34, 3.0663e-41, 2.5645e+27, 3.0663e-41],
[1.1210e-43, 0.0000e+00, 8.9683e-44, 0.0000e+00],
[7.6470e-19, 3.0670e-41, 4.6243e-44, 0.0000e+00]])
让我们来解析一下刚刚的操作
我们使用附属于
torch
模块的众多工厂方法之一创建了一个张量。张量本身是二维的,具有 3 行和 4 列。
返回对象的类型是
torch.Tensor
,它是torch.FloatTensor
的别名;默认情况下,PyTorch 张量填充的是 32 位浮点数。(更多关于数据类型的信息见下文。)打印张量时,你可能会看到一些看起来随机的值。
torch.empty()
调用为张量分配内存,但不使用任何值初始化它 — 所以你看到的是分配内存时内存中的任何内容。
关于张量及其维数的一些简要说明,以及术语
你有时会看到一个一维张量,被称为一个 向量。
同样地,一个二维张量通常被称为一个 矩阵。
任何维度超过两个的,通常就称为张量。
通常,你会希望使用某个值来初始化你的张量。常见的情况是全部为零、全部为一或随机值,并且 torch
模块为所有这些情况提供了工厂方法
zeros = torch.zeros(2, 3)
print(zeros)
ones = torch.ones(2, 3)
print(ones)
torch.manual_seed(1729)
random = torch.rand(2, 3)
print(random)
tensor([[0., 0., 0.],
[0., 0., 0.]])
tensor([[1., 1., 1.],
[1., 1., 1.]])
tensor([[0.3126, 0.3791, 0.3087],
[0.0736, 0.4216, 0.0691]])
这些工厂方法的功能正如你所预期 — 我们创建了一个全零张量,另一个全一张量,还有一个填充了介于 0 和 1 之间的随机值的张量。
随机张量与种子设定¶
说到随机张量,你注意到紧随其后的 torch.manual_seed()
调用了吗?使用随机值初始化张量(例如模型的学习权重)是很常见的,但有时——尤其是在研究环境中——你会需要确保结果的可复现性。手动设置随机数生成器的种子就是实现这一目标的方法。让我们仔细看看
torch.manual_seed(1729)
random1 = torch.rand(2, 3)
print(random1)
random2 = torch.rand(2, 3)
print(random2)
torch.manual_seed(1729)
random3 = torch.rand(2, 3)
print(random3)
random4 = torch.rand(2, 3)
print(random4)
tensor([[0.3126, 0.3791, 0.3087],
[0.0736, 0.4216, 0.0691]])
tensor([[0.2332, 0.4047, 0.2162],
[0.9927, 0.4128, 0.5938]])
tensor([[0.3126, 0.3791, 0.3087],
[0.0736, 0.4216, 0.0691]])
tensor([[0.2332, 0.4047, 0.2162],
[0.9927, 0.4128, 0.5938]])
你应该看到的是 random1
和 random3
的值是相同的,random2
和 random4
的值也是如此。手动设置 RNG(随机数生成器)的种子会重置它,这样一来,依赖于随机数的相同计算在大多数情况下会产生相同的结果。
更多信息,请参阅 PyTorch 关于可复现性的文档。
张量形状¶
通常,当你对两个或更多张量执行操作时,它们需要具有相同的 形状 — 也就是说,具有相同的维数以及每个维度中相同的单元数量。为此,我们有 torch.*_like()
方法
x = torch.empty(2, 2, 3)
print(x.shape)
print(x)
empty_like_x = torch.empty_like(x)
print(empty_like_x.shape)
print(empty_like_x)
zeros_like_x = torch.zeros_like(x)
print(zeros_like_x.shape)
print(zeros_like_x)
ones_like_x = torch.ones_like(x)
print(ones_like_x.shape)
print(ones_like_x)
rand_like_x = torch.rand_like(x)
print(rand_like_x.shape)
print(rand_like_x)
torch.Size([2, 2, 3])
tensor([[[6.9458e-19, 3.0670e-41, 1.4013e-45],
[0.0000e+00, 1.4013e-45, 0.0000e+00]],
[[1.4013e-45, 0.0000e+00, 1.4013e-45],
[0.0000e+00, 1.4013e-45, 0.0000e+00]]])
torch.Size([2, 2, 3])
tensor([[[1.0845e-17, 3.0670e-41, 1.4013e-45],
[0.0000e+00, 1.4013e-45, 0.0000e+00]],
[[1.4013e-45, 0.0000e+00, 1.4013e-45],
[0.0000e+00, 1.4013e-45, 0.0000e+00]]])
torch.Size([2, 2, 3])
tensor([[[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.]]])
torch.Size([2, 2, 3])
tensor([[[1., 1., 1.],
[1., 1., 1.]],
[[1., 1., 1.],
[1., 1., 1.]]])
torch.Size([2, 2, 3])
tensor([[[0.6128, 0.1519, 0.0453],
[0.5035, 0.9978, 0.3884]],
[[0.6929, 0.1703, 0.1384],
[0.4759, 0.7481, 0.0361]]])
上面代码单元中的第一个新内容是对张量使用 .shape
属性。这个属性包含一个列表,列出了张量每个维度的大小 — 在我们的例子中,x
是一个形状为 2 x 2 x 3 的三维张量。
在那之下,我们调用了 .empty_like()
、.zeros_like()
、.ones_like()
和 .rand_like()
方法。使用 .shape
属性,我们可以验证这些方法都返回了具有相同维度和大小的张量。
我们将介绍的最后一种创建张量的方法是直接从 PyTorch 集合指定其数据
some_constants = torch.tensor([[3.1415926, 2.71828], [1.61803, 0.0072897]])
print(some_constants)
some_integers = torch.tensor((2, 3, 5, 7, 11, 13, 17, 19))
print(some_integers)
more_integers = torch.tensor(((2, 4, 6), [3, 6, 9]))
print(more_integers)
tensor([[3.1416, 2.7183],
[1.6180, 0.0073]])
tensor([ 2, 3, 5, 7, 11, 13, 17, 19])
tensor([[2, 4, 6],
[3, 6, 9]])
如果你已经有了 Python 元组或列表中的数据,使用 torch.tensor()
是创建张量最直接的方法。如上所示,嵌套集合会产生一个多维张量。
注意
torch.tensor()
会创建一个数据副本。
张量数据类型¶
设置张量的数据类型有几种方法
a = torch.ones((2, 3), dtype=torch.int16)
print(a)
b = torch.rand((2, 3), dtype=torch.float64) * 20.
print(b)
c = b.to(torch.int32)
print(c)
tensor([[1, 1, 1],
[1, 1, 1]], dtype=torch.int16)
tensor([[ 0.9956, 1.4148, 5.8364],
[11.2406, 11.2083, 11.6692]], dtype=torch.float64)
tensor([[ 0, 1, 5],
[11, 11, 11]], dtype=torch.int32)
设置张量底层数据类型最简单的方法是在创建时使用可选参数。在上面代码单元的第一行中,我们为张量 a
设置了 dtype=torch.int16
。当我们打印 a
时,我们可以看到它填充的是 1
而不是 1.
— 这是 Python 细微的提示,表明这是一个整数类型而不是浮点类型。
关于打印 a
还需要注意的另一件事是,不像我们使用默认 dtype
(32 位浮点数) 时那样,打印张量时也指定了它的 dtype
。
你可能还注意到,我们从将张量形状指定为一系列整数参数的方式,变为了将这些参数分组到一个元组中。这并非严格必要——PyTorch 会将一系列初始的、未标记的整数参数视为张量形状——但在添加可选参数时,这样做可以使你的意图更易读。
设置数据类型的另一种方法是使用 .to()
方法。在上面的代码单元中,我们以通常的方式创建了一个随机浮点张量 b
。之后,我们通过使用 .to()
方法将 b
转换为 32 位整数来创建 c
。注意 c
包含了与 b
相同的所有值,但截断为整数。
更多信息,请参阅 数据类型文档。
使用 PyTorch 张量进行数学与逻辑运算¶
既然你了解了一些创建张量的方法……你可以用它们做什么呢?
首先我们来看基本算术运算,以及张量如何与简单标量交互
ones = torch.zeros(2, 2) + 1
twos = torch.ones(2, 2) * 2
threes = (torch.ones(2, 2) * 7 - 1) / 2
fours = twos ** 2
sqrt2s = twos ** 0.5
print(ones)
print(twos)
print(threes)
print(fours)
print(sqrt2s)
tensor([[1., 1.],
[1., 1.]])
tensor([[2., 2.],
[2., 2.]])
tensor([[3., 3.],
[3., 3.]])
tensor([[4., 4.],
[4., 4.]])
tensor([[1.4142, 1.4142],
[1.4142, 1.4142]])
如你在上面看到的,张量与标量之间的算术运算,例如加、减、乘、除和指数运算,会分发到张量的每个元素上。因为此类操作的输出将是一个张量,你可以按照通常的运算符优先级规则将它们串联起来,就像我们创建 threes
的那一行一样。
两个张量之间的类似操作,表现也如你直观期望的那样
tensor([[ 2., 4.],
[ 8., 16.]])
tensor([[5., 5.],
[5., 5.]])
tensor([[12., 12.],
[12., 12.]])
这里需要注意的是,上一个代码单元中的所有张量形状都相同。如果张量形状不同,当我们尝试执行二元操作时会发生什么?
注意
下面的单元格会抛出一个运行时错误。这是预期的行为。
a = torch.rand(2, 3)
b = torch.rand(3, 2)
print(a * b)
一般来说,你不能以这种方式对形状不同的张量进行操作,即使在像上面那个单元格那样,张量具有相同数量元素的情况下也不行。
简而言之:张量广播¶
注意
如果你熟悉 NumPy ndarrays 中的广播语义,你会发现相同的规则也适用于这里。
相同形状规则的例外是 张量广播。 这是一个例子
rand = torch.rand(2, 4)
doubled = rand * (torch.ones(1, 4) * 2)
print(rand)
print(doubled)
tensor([[0.6146, 0.5999, 0.5013, 0.9397],
[0.8656, 0.5207, 0.6865, 0.3614]])
tensor([[1.2291, 1.1998, 1.0026, 1.8793],
[1.7312, 1.0413, 1.3730, 0.7228]])
这里的技巧是什么?我们怎么能将一个 2x4 的张量乘以一个 1x4 的张量呢?
广播是一种在形状相似的张量之间执行操作的方法。在上面的例子中,一行四列的张量被乘以两行四列张量的 两行。
这在深度学习中是一个重要的操作。常见的例子是将学习权重的张量乘以一批输入张量,将操作分别应用于批次中的每个实例,并返回一个相同形状的张量 — 就像我们上面 (2, 4) * (1, 4) 的例子返回了一个形状为 (2, 4) 的张量一样。
广播规则是
每个张量必须至少有一个维度 — 没有空张量。
比较两个张量的维度大小,从最后一个维度开始向前比较:
每个维度必须相等,或者
其中一个维度的大小必须为 1,或者
该维度在其中一个张量中不存在
当然,形状相同的张量可以轻易地进行“广播”,如你之前所见。
这里有一些遵循上述规则并允许广播的情况的例子
a = torch.ones(4, 3, 2)
b = a * torch.rand( 3, 2) # 3rd & 2nd dims identical to a, dim 1 absent
print(b)
c = a * torch.rand( 3, 1) # 3rd dim = 1, 2nd dim identical to a
print(c)
d = a * torch.rand( 1, 2) # 3rd dim identical to a, 2nd dim = 1
print(d)
tensor([[[0.6493, 0.2633],
[0.4762, 0.0548],
[0.2024, 0.5731]],
[[0.6493, 0.2633],
[0.4762, 0.0548],
[0.2024, 0.5731]],
[[0.6493, 0.2633],
[0.4762, 0.0548],
[0.2024, 0.5731]],
[[0.6493, 0.2633],
[0.4762, 0.0548],
[0.2024, 0.5731]]])
tensor([[[0.7191, 0.7191],
[0.4067, 0.4067],
[0.7301, 0.7301]],
[[0.7191, 0.7191],
[0.4067, 0.4067],
[0.7301, 0.7301]],
[[0.7191, 0.7191],
[0.4067, 0.4067],
[0.7301, 0.7301]],
[[0.7191, 0.7191],
[0.4067, 0.4067],
[0.7301, 0.7301]]])
tensor([[[0.6276, 0.7357],
[0.6276, 0.7357],
[0.6276, 0.7357]],
[[0.6276, 0.7357],
[0.6276, 0.7357],
[0.6276, 0.7357]],
[[0.6276, 0.7357],
[0.6276, 0.7357],
[0.6276, 0.7357]],
[[0.6276, 0.7357],
[0.6276, 0.7357],
[0.6276, 0.7357]]])
仔细看看上面每个张量的值
创建
b
的乘法操作被广播到了a
的每一层。对于
c
,该操作被广播到了a
的每一层和每一行 — 每一列(3 个元素)都是相同的。对于
d
,我们将其调换了过来 — 现在每一 行 都是相同的,跨越了层和列。
更多关于广播的信息,请参阅 PyTorch 文档。
这里有一些尝试广播但会失败的例子
注意
下面的单元格会抛出一个运行时错误。这是预期的行为。
a = torch.ones(4, 3, 2)
b = a * torch.rand(4, 3) # dimensions must match last-to-first
c = a * torch.rand( 2, 3) # both 3rd & 2nd dims different
d = a * torch.rand((0, )) # can't broadcast with an empty tensor
使用张量进行更多数学运算¶
PyTorch 张量拥有三百多种可以对其进行的操作。
这里是一些主要操作类别中的一个小示例
# common functions
a = torch.rand(2, 4) * 2 - 1
print('Common functions:')
print(torch.abs(a))
print(torch.ceil(a))
print(torch.floor(a))
print(torch.clamp(a, -0.5, 0.5))
# trigonometric functions and their inverses
angles = torch.tensor([0, math.pi / 4, math.pi / 2, 3 * math.pi / 4])
sines = torch.sin(angles)
inverses = torch.asin(sines)
print('\nSine and arcsine:')
print(angles)
print(sines)
print(inverses)
# bitwise operations
print('\nBitwise XOR:')
b = torch.tensor([1, 5, 11])
c = torch.tensor([2, 7, 10])
print(torch.bitwise_xor(b, c))
# comparisons:
print('\nBroadcasted, element-wise equality comparison:')
d = torch.tensor([[1., 2.], [3., 4.]])
e = torch.ones(1, 2) # many comparison ops support broadcasting!
print(torch.eq(d, e)) # returns a tensor of type bool
# reductions:
print('\nReduction ops:')
print(torch.max(d)) # returns a single-element tensor
print(torch.max(d).item()) # extracts the value from the returned tensor
print(torch.mean(d)) # average
print(torch.std(d)) # standard deviation
print(torch.prod(d)) # product of all numbers
print(torch.unique(torch.tensor([1, 2, 1, 2, 1, 2]))) # filter unique elements
# vector and linear algebra operations
v1 = torch.tensor([1., 0., 0.]) # x unit vector
v2 = torch.tensor([0., 1., 0.]) # y unit vector
m1 = torch.rand(2, 2) # random matrix
m2 = torch.tensor([[3., 0.], [0., 3.]]) # three times identity matrix
print('\nVectors & Matrices:')
print(torch.linalg.cross(v2, v1)) # negative of z unit vector (v1 x v2 == -v2 x v1)
print(m1)
m3 = torch.linalg.matmul(m1, m2)
print(m3) # 3 times m1
print(torch.linalg.svd(m3)) # singular value decomposition
Common functions:
tensor([[0.9238, 0.5724, 0.0791, 0.2629],
[0.1986, 0.4439, 0.6434, 0.4776]])
tensor([[-0., -0., 1., -0.],
[-0., 1., 1., -0.]])
tensor([[-1., -1., 0., -1.],
[-1., 0., 0., -1.]])
tensor([[-0.5000, -0.5000, 0.0791, -0.2629],
[-0.1986, 0.4439, 0.5000, -0.4776]])
Sine and arcsine:
tensor([0.0000, 0.7854, 1.5708, 2.3562])
tensor([0.0000, 0.7071, 1.0000, 0.7071])
tensor([0.0000, 0.7854, 1.5708, 0.7854])
Bitwise XOR:
tensor([3, 2, 1])
Broadcasted, element-wise equality comparison:
tensor([[ True, False],
[False, False]])
Reduction ops:
tensor(4.)
4.0
tensor(2.5000)
tensor(1.2910)
tensor(24.)
tensor([1, 2])
Vectors & Matrices:
tensor([ 0., 0., -1.])
tensor([[0.7375, 0.8328],
[0.8444, 0.2941]])
tensor([[2.2125, 2.4985],
[2.5332, 0.8822]])
torch.return_types.linalg_svd(
U=tensor([[-0.7889, -0.6145],
[-0.6145, 0.7889]]),
S=tensor([4.1498, 1.0548]),
Vh=tensor([[-0.7957, -0.6056],
[ 0.6056, -0.7957]]))
这只是操作的一小部分示例。更多详细信息和完整的数学函数列表,请参阅文档。更多详细信息和完整的线性代数操作列表,请参阅此文档。
原地修改张量¶
大多数张量上的二元操作会返回第三个新的张量。当我们写 c = a * b
(其中 a
和 b
是张量)时,新张量 c
将占用与其它张量不同的内存区域。
然而,有时你可能希望原地修改张量 — 例如,如果你正在进行元素级计算,并且可以丢弃中间值。为此,大多数数学函数都有一个带下划线 (_
) 后缀的版本,它们会原地修改张量。
例如
a = torch.tensor([0, math.pi / 4, math.pi / 2, 3 * math.pi / 4])
print('a:')
print(a)
print(torch.sin(a)) # this operation creates a new tensor in memory
print(a) # a has not changed
b = torch.tensor([0, math.pi / 4, math.pi / 2, 3 * math.pi / 4])
print('\nb:')
print(b)
print(torch.sin_(b)) # note the underscore
print(b) # b has changed
a:
tensor([0.0000, 0.7854, 1.5708, 2.3562])
tensor([0.0000, 0.7071, 1.0000, 0.7071])
tensor([0.0000, 0.7854, 1.5708, 2.3562])
b:
tensor([0.0000, 0.7854, 1.5708, 2.3562])
tensor([0.0000, 0.7071, 1.0000, 0.7071])
tensor([0.0000, 0.7071, 1.0000, 0.7071])
对于算术运算,也有行为类似的函数
Before:
tensor([[1., 1.],
[1., 1.]])
tensor([[0.3788, 0.4567],
[0.0649, 0.6677]])
After adding:
tensor([[1.3788, 1.4567],
[1.0649, 1.6677]])
tensor([[1.3788, 1.4567],
[1.0649, 1.6677]])
tensor([[0.3788, 0.4567],
[0.0649, 0.6677]])
After multiplying
tensor([[0.1435, 0.2086],
[0.0042, 0.4459]])
tensor([[0.1435, 0.2086],
[0.0042, 0.4459]])
注意这些原地算术函数是 torch.Tensor
对象的方法,而不像许多其他函数(例如 torch.sin()
)那样附属于 torch
模块。如你从 a.add_(b)
中看到的,调用方张量是原地修改的那个。
还有另一种将计算结果放入已存在的已分配张量中的选项。到目前为止我们见过的许多方法和函数——包括创建方法!——都有一个 out
参数,允许你指定一个张量来接收输出。如果 out
张量的形状和 dtype
正确,就可以避免新的内存分配
a = torch.rand(2, 2)
b = torch.rand(2, 2)
c = torch.zeros(2, 2)
old_id = id(c)
print(c)
d = torch.matmul(a, b, out=c)
print(c) # contents of c have changed
assert c is d # test c & d are same object, not just containing equal values
assert id(c) == old_id # make sure that our new c is the same object as the old one
torch.rand(2, 2, out=c) # works for creation too!
print(c) # c has changed again
assert id(c) == old_id # still the same object!
tensor([[0., 0.],
[0., 0.]])
tensor([[0.3653, 0.8699],
[0.2364, 0.3604]])
tensor([[0.0776, 0.4004],
[0.9877, 0.0352]])
复制张量¶
和 Python 中的任何对象一样,将一个张量赋值给一个变量会使该变量成为张量的一个 标签,而不会复制它。例如
tensor([[ 1., 561.],
[ 1., 1.]])
但如果你想获得一个独立的数据副本进行操作呢?clone()
方法可以帮助你
tensor([[True, True],
[True, True]])
tensor([[1., 1.],
[1., 1.]])
使用 clone()
时,有一件重要的事情需要注意。如果源张量启用了 autograd,那么克隆出来的张量也会启用。这一点将在关于 autograd 的视频中更深入地讲解,但如果你想了解一些简单的细节,可以继续阅读。
在很多情况下,这正是你想要的。 例如,如果你的模型在其 forward()
方法中有多个计算路径,并且原始张量及其克隆体 都 对模型的输出有贡献,那么为了支持模型学习,你会希望这两个张量都开启 autograd。如果你的源张量启用了 autograd(如果它是一组学习权重或源自涉及权重的计算,通常会启用),那么你就会得到想要的结果。
另一方面,如果你正在进行一个计算,其中原始张量和它的克隆体 都不 需要跟踪梯度,那么只要源张量关闭了 autograd,就没问题了。
然而,还有第三种情况: 想象你在模型的 forward()
函数中执行计算,其中梯度默认对所有内容都开启,但你想要在计算过程中取出一些值来生成一些指标。在这种情况下,你 不 希望源张量的克隆副本跟踪梯度 — 关闭 autograd 的历史跟踪可以提高性能。为此,你可以对源张量使用 .detach()
方法
tensor([[0.0905, 0.4485],
[0.8740, 0.2526]], requires_grad=True)
tensor([[0.0905, 0.4485],
[0.8740, 0.2526]], grad_fn=<CloneBackward0>)
tensor([[0.0905, 0.4485],
[0.8740, 0.2526]])
tensor([[0.0905, 0.4485],
[0.8740, 0.2526]], requires_grad=True)
这里发生了什么?
我们创建
a
时开启了requires_grad=True
。我们尚未讲解这个可选参数,但在关于 autograd 的单元中会进行讲解。当我们打印
a
时,它会告诉我们属性requires_grad=True
— 这意味着 autograd 和计算历史跟踪已开启。我们克隆了
a
并将其标记为b
。当我们打印b
时,我们可以看到它正在跟踪其计算历史 — 它继承了a
的 autograd 设置,并添加到了计算历史中。我们将
a
克隆到c
中,但我们首先调用了detach()
。打印
c
,我们看不到计算历史,也没有requires_grad=True
。
detach()
方法 将张量从其计算历史中分离出来。 它表示:“接下来进行的任何操作,都仿佛 autograd 是关闭的。”它这样做 并不会 改变 a
— 你可以看到,当我们在最后再次打印 a
时,它保留了其 requires_grad=True
属性。
移至 加速器¶
PyTorch 的主要优势之一在于其在 加速器(如 CUDA、MPS、MTIA 或 XPU)上的强大加速能力。到目前为止,我们进行的所有操作都是在 CPU 上完成的。我们如何转移到更快的硬件上呢?
首先,我们应该使用 is_available()
方法检查加速器是否可用。
注意
如果你没有加速器,本节中的可执行单元格将不会执行任何与加速器相关的代码。
if torch.accelerator.is_available():
print('We have an accelerator!')
else:
print('Sorry, CPU only.')
We have an accelerator!
一旦我们确定有一个或多个加速器可用,我们就需要将数据放在加速器可以访问的地方。你的 CPU 对计算机 RAM 中的数据进行计算。你的加速器有专用的附加内存。无论何时你想要在设备上执行计算,你必须将该计算所需的所有数据移动到该设备可访问的内存中。(通俗地说,“将数据移动到 GPU 可访问的内存中”简称为“将数据移动到 GPU”。)
有多种方法可以将你的数据放到目标设备上。你可以在创建时就完成此操作
if torch.accelerator.is_available():
gpu_rand = torch.rand(2, 2, device=torch.accelerator.current_accelerator())
print(gpu_rand)
else:
print('Sorry, CPU only.')
tensor([[0.3344, 0.2640],
[0.2119, 0.0582]], device='cuda:0')
默认情况下,新张量是在 CPU 上创建的,所以我们必须使用可选的 device
参数指定何时在加速器上创建张量。你可以看到,当我们打印新张量时,PyTorch 会告知它所在的设备(如果不在 CPU 上)。
你可以使用 torch.accelerator.device_count()
查询加速器的数量。如果你有多个加速器,可以按索引指定,以 CUDA 为例:device='cuda:0'
, device='cuda:1'
等。
作为一种编码习惯,随处使用字符串常量指定设备是相当脆弱的。在理想情况下,无论你是在 CPU 还是加速器硬件上,你的代码都应该能健壮地运行。你可以通过创建一个设备句柄来实现这一点,该句柄可以传递给你的张量,而不是字符串。
my_device = torch.accelerator.current_accelerator() if torch.accelerator.is_available() else torch.device('cpu')
print('Device: {}'.format(my_device))
x = torch.rand(2, 2, device=my_device)
print(x)
Device: cuda
tensor([[0.0024, 0.6778],
[0.2441, 0.6812]], device='cuda:0')
如果你有一个已存在于某个设备上的张量,可以使用 to()
方法将其移动到另一个设备。下面的代码行在 CPU 上创建一个张量,并将其移动到你在上一个单元格中获取的设备句柄上。
y = torch.rand(2, 2)
y = y.to(my_device)
重要的是要知道,为了进行涉及两个或多个张量的计算,*所有张量必须位于同一设备上*。以下代码将会抛出运行时错误,无论你是否拥有加速器设备可用,以 CUDA 为例
x = torch.rand(2, 2)
y = torch.rand(2, 2, device='cuda')
z = x + y # exception will be thrown
操纵张量形状¶
有时,你需要改变张量的形状。下面,我们将看看一些常见的情况以及如何处理它们。
改变维度数量¶
你可能需要改变维度数量的一个情况是将单个输入实例传递给模型。PyTorch 模型通常期望的是输入*批次*。
例如,想象一个处理 3 x 226 x 226 图像的模型——一个 226 像素的正方形,具有 3 个颜色通道。当你加载并转换它时,你会得到一个形状为 (3, 226, 226)
的张量。然而,你的模型期望的输入形状是 (N, 3, 226, 226)
,其中 N
是批次中的图像数量。那么你如何创建一个包含一个图像的批次呢?
torch.Size([3, 226, 226])
torch.Size([1, 3, 226, 226])
unsqueeze()
方法添加一个大小为 1 的维度。unsqueeze(0)
将其添加为新的第零个维度——现在你就拥有了一个大小为一的批次!
那么如果那是*解除挤压*(unsqueezing)?挤压(squeezing)是什么意思呢?我们利用了一个事实,即任何大小为 1 的维度都*不会*改变张量中元素的数量。
c = torch.rand(1, 1, 1, 1, 1)
print(c)
tensor([[[[[0.2347]]]]])
继续上面的例子,假设模型对每个输入输出一个包含 20 个元素的向量。那么你期望的输出形状是 (N, 20)
,其中 N
是输入批次中的实例数量。这意味着对于我们的单输入批次,我们将得到形状为 (1, 20)
的输出。
如果你想对该输出执行一些*非批处理*计算——即期望一个包含 20 个元素的向量的计算——怎么办?
torch.Size([1, 20])
tensor([[0.1899, 0.4067, 0.1519, 0.1506, 0.9585, 0.7756, 0.8973, 0.4929, 0.2367,
0.8194, 0.4509, 0.2690, 0.8381, 0.8207, 0.6818, 0.5057, 0.9335, 0.9769,
0.2792, 0.3277]])
torch.Size([20])
tensor([0.1899, 0.4067, 0.1519, 0.1506, 0.9585, 0.7756, 0.8973, 0.4929, 0.2367,
0.8194, 0.4509, 0.2690, 0.8381, 0.8207, 0.6818, 0.5057, 0.9335, 0.9769,
0.2792, 0.3277])
torch.Size([2, 2])
torch.Size([2, 2])
从形状可以看出,我们的 2 维张量现在是 1 维的,如果你仔细观察上面单元格的输出,你会看到打印 a
时由于多了一个维度而显示出“额外”的一对方括号 []
。
你只能 squeeze()
大小为 1 的维度。请看上面我们尝试在 c
中挤压一个大小为 2 的维度,结果得到了与起始形状相同的形状。对 squeeze()
和 unsqueeze()
的调用只能作用于大小为 1 的维度,因为否则会改变张量中元素的数量。
你可能使用 unsqueeze()
的另一个地方是为了简化广播。回想一下上面我们有以下代码的例子
a = torch.ones(4, 3, 2)
c = a * torch.rand( 3, 1) # 3rd dim = 1, 2nd dim identical to a
print(c)
其最终效果是将操作广播到维度 0 和 2 上,使得随机的 3 x 1 张量与 a
中每个 3 元素列进行逐元素相乘。
如果随机向量只是一个 3 元素向量呢?我们将失去进行广播的能力,因为最终维度不符合广播规则。这时 unsqueeze()
就派上用场了
a = torch.ones(4, 3, 2)
b = torch.rand( 3) # trying to multiply a * b will give a runtime error
c = b.unsqueeze(1) # change to a 2-dimensional tensor, adding new dim at the end
print(c.shape)
print(a * c) # broadcasting works again!
torch.Size([3, 1])
tensor([[[0.1891, 0.1891],
[0.3952, 0.3952],
[0.9176, 0.9176]],
[[0.1891, 0.1891],
[0.3952, 0.3952],
[0.9176, 0.9176]],
[[0.1891, 0.1891],
[0.3952, 0.3952],
[0.9176, 0.9176]],
[[0.1891, 0.1891],
[0.3952, 0.3952],
[0.9176, 0.9176]]])
squeeze()
和 unsqueeze()
方法也有原地(in-place)版本,即 squeeze_()
和 unsqueeze_()
batch_me = torch.rand(3, 226, 226)
print(batch_me.shape)
batch_me.unsqueeze_(0)
print(batch_me.shape)
torch.Size([3, 226, 226])
torch.Size([1, 3, 226, 226])
有时你会想更彻底地改变张量的形状,同时仍保留元素的数量及其内容。一个常见的情况发生在模型的卷积层和线性层之间——这在图像分类模型中很常见。卷积核会产生一个形状为 *特征数 x 宽度 x 高度* 的输出张量,但随后的线性层需要一维输入。reshape()
可以为你完成此操作,前提是你请求的维度能产生与输入张量相同数量的元素。
output3d = torch.rand(6, 20, 20)
print(output3d.shape)
input1d = output3d.reshape(6 * 20 * 20)
print(input1d.shape)
# can also call it as a method on the torch module:
print(torch.reshape(output3d, (6 * 20 * 20,)).shape)
torch.Size([6, 20, 20])
torch.Size([2400])
torch.Size([2400])
注意
上面单元格最后一行中的 (6 * 20 * 20,)
参数是因为 PyTorch 在指定张量形状时需要一个元组——但当形状是方法的第一个参数时,它允许我们“投机取巧”,只使用一系列整数。在这里,我们必须添加括号和逗号,以使方法确信这确实是一个单元素元组。
在可能的情况下,reshape()
将返回要改变的张量的一个视图——也就是说,一个独立的张量对象,它查看同一片底层内存区域。这一点很重要:这意味着对源张量进行的任何更改都会反映在该张量的视图中,除非你对其进行 clone()
操作。
存在一些情况(超出了本介绍的范围),其中 reshape()
必须返回一个包含数据副本的张量。更多信息,请参阅文档。
NumPy 桥接¶
在上面关于广播的部分中提到,PyTorch 的广播语义与 NumPy 兼容——但 PyTorch 和 NumPy 之间的联系远不止于此。
如果你现有的 ML 或科学计算代码将数据存储在 NumPy ndarray 中,你可能希望将相同的数据表示为 PyTorch 张量,无论是为了利用 PyTorch 的 GPU 加速,还是为了利用其构建 ML 模型的高效抽象。在 ndarray 和 PyTorch 张量之间切换非常容易
import numpy as np
numpy_array = np.ones((2, 3))
print(numpy_array)
pytorch_tensor = torch.from_numpy(numpy_array)
print(pytorch_tensor)
[[1. 1. 1.]
[1. 1. 1.]]
tensor([[1., 1., 1.],
[1., 1., 1.]], dtype=torch.float64)
PyTorch 会创建一个形状和数据与 NumPy 数组相同的张量,甚至保留了 NumPy 默认的 64 位浮点数据类型。
转换反过来也同样容易。
pytorch_rand = torch.rand(2, 3)
print(pytorch_rand)
numpy_rand = pytorch_rand.numpy()
print(numpy_rand)
tensor([[0.8716, 0.2459, 0.3499],
[0.2853, 0.9091, 0.5695]])
[[0.87163675 0.2458961 0.34993553]
[0.2853077 0.90905803 0.5695162 ]]
重要的是要知道,这些转换后的对象与其源对象使用相同的底层内存,这意味着对一个对象进行的更改会反映在另一个对象中
numpy_array[1, 1] = 23
print(pytorch_tensor)
pytorch_rand[1, 1] = 17
print(numpy_rand)
tensor([[ 1., 1., 1.],
[ 1., 23., 1.]], dtype=torch.float64)
[[ 0.87163675 0.2458961 0.34993553]
[ 0.2853077 17. 0.5695162 ]]
脚本总运行时间: ( 0 minutes 0.257 seconds)