注意
点击此处下载完整的示例代码
计算机视觉迁移学习教程¶
创建于:2017 年 3 月 24 日 | 最后更新:2025 年 1 月 27 日 | 最后验证:2024 年 11 月 05 日
在本教程中,您将学习如何使用迁移学习训练用于图像分类的卷积神经网络。您可以在 cs231n 笔记 中阅读有关迁移学习的更多信息
引用这些笔记,
在实践中,很少有人从头开始(使用随机初始化)训练整个卷积网络,因为拥有足够大的数据集相对罕见。相反,通常的做法是在非常大的数据集(例如 ImageNet,包含 120 万张图像和 1000 个类别)上预训练一个 ConvNet,然后将 ConvNet 用作初始化或固定特征提取器,用于感兴趣的任务。
以下是两种主要的迁移学习方案
微调 ConvNet:我们使用预训练的网络(例如在 imagenet 1000 数据集上训练的网络)初始化网络,而不是随机初始化。其余的训练看起来像往常一样。
ConvNet 作为固定特征提取器:在这里,我们将冻结除最终全连接层之外的所有网络的权重。最后一个全连接层被替换为一个新的随机权重层,并且仅训练该层。
# License: BSD
# Author: Sasank Chilamkurthy
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
from PIL import Image
from tempfile import TemporaryDirectory
cudnn.benchmark = True
plt.ion() # interactive mode
<contextlib.ExitStack object at 0x7fb13e4ba860>
加载数据¶
我们将使用 torchvision 和 torch.utils.data 包来加载数据。
我们今天要解决的问题是训练一个模型来分类蚂蚁和蜜蜂。我们分别有大约 120 张蚂蚁和蜜蜂的训练图像。每个类别有 75 张验证图像。通常,如果从头开始训练,这是一个非常小的数据集,难以泛化。由于我们正在使用迁移学习,我们应该能够合理地泛化。
此数据集是 imagenet 的一个非常小的子集。
注意
从此处下载数据并将其解压到当前目录。
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'data/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
# We want to be able to train our model on an `accelerator <https://pytorch.ac.cn/docs/stable/torch.html#accelerators>`__
# such as CUDA, MPS, MTIA, or XPU. If the current accelerator is available, we will use it. Otherwise, we use the CPU.
device = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
print(f"Using {device} device")
Using cuda device
可视化一些图像¶
让我们可视化一些训练图像,以便了解数据增强。
def imshow(inp, title=None):
"""Display image for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
# Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))
# Make a grid from batch
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x] for x in classes])
![['ants', 'ants', 'ants', 'ants']](../_images/sphx_glr_transfer_learning_tutorial_001.png)
训练模型¶
现在,让我们编写一个通用函数来训练模型。在这里,我们将演示
调度学习率
保存最佳模型
在下面,参数 scheduler
是来自 torch.optim.lr_scheduler
的 LR 调度器对象。
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
# Create a temporary directory to save training checkpoints
with TemporaryDirectory() as tempdir:
best_model_params_path = os.path.join(tempdir, 'best_model_params.pt')
torch.save(model.state_dict(), best_model_params_path)
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
torch.save(model.state_dict(), best_model_params_path)
print()
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
print(f'Best val Acc: {best_acc:4f}')
# load best model weights
model.load_state_dict(torch.load(best_model_params_path, weights_only=True))
return model
可视化模型预测¶
用于显示一些图像预测的通用函数
def visualize_model(model, num_images=6):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title(f'predicted: {class_names[preds[j]]}')
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
微调 ConvNet¶
加载预训练模型并重置最终全连接层。
model_ft = models.resnet18(weights='IMAGENET1K_V1')
num_ftrs = model_ft.fc.in_features
# Here the size of each output sample is set to 2.
# Alternatively, it can be generalized to ``nn.Linear(num_ftrs, len(class_names))``.
model_ft.fc = nn.Linear(num_ftrs, 2)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth
0%| | 0.00/44.7M [00:00<?, ?B/s]
46%|####6 | 20.6M/44.7M [00:00<00:00, 216MB/s]
93%|#########3| 41.8M/44.7M [00:00<00:00, 219MB/s]
100%|##########| 44.7M/44.7M [00:00<00:00, 219MB/s]
训练和评估¶
在 CPU 上应该需要大约 15-25 分钟。但在 GPU 上,不到一分钟。
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=25)
Epoch 0/24
----------
train Loss: 0.4763 Acc: 0.7623
val Loss: 0.2740 Acc: 0.8889
Epoch 1/24
----------
train Loss: 0.5324 Acc: 0.7992
val Loss: 0.6551 Acc: 0.7386
Epoch 2/24
----------
train Loss: 0.4263 Acc: 0.8238
val Loss: 0.2401 Acc: 0.9150
Epoch 3/24
----------
train Loss: 0.5954 Acc: 0.7582
val Loss: 0.2763 Acc: 0.9020
Epoch 4/24
----------
train Loss: 0.3802 Acc: 0.8361
val Loss: 0.2835 Acc: 0.9085
Epoch 5/24
----------
train Loss: 0.4481 Acc: 0.8033
val Loss: 0.2775 Acc: 0.8954
Epoch 6/24
----------
train Loss: 0.3503 Acc: 0.8115
val Loss: 0.2096 Acc: 0.9216
Epoch 7/24
----------
train Loss: 0.3870 Acc: 0.8689
val Loss: 0.1859 Acc: 0.9412
Epoch 8/24
----------
train Loss: 0.2612 Acc: 0.9098
val Loss: 0.1868 Acc: 0.9281
Epoch 9/24
----------
train Loss: 0.2483 Acc: 0.8893
val Loss: 0.2420 Acc: 0.9150
Epoch 10/24
----------
train Loss: 0.3824 Acc: 0.8484
val Loss: 0.1724 Acc: 0.9477
Epoch 11/24
----------
train Loss: 0.3602 Acc: 0.8279
val Loss: 0.2520 Acc: 0.9020
Epoch 12/24
----------
train Loss: 0.2301 Acc: 0.8934
val Loss: 0.2084 Acc: 0.9216
Epoch 13/24
----------
train Loss: 0.3166 Acc: 0.8770
val Loss: 0.1766 Acc: 0.9412
Epoch 14/24
----------
train Loss: 0.2658 Acc: 0.8893
val Loss: 0.2410 Acc: 0.8824
Epoch 15/24
----------
train Loss: 0.3039 Acc: 0.8607
val Loss: 0.2693 Acc: 0.8693
Epoch 16/24
----------
train Loss: 0.2393 Acc: 0.9016
val Loss: 0.1950 Acc: 0.9216
Epoch 17/24
----------
train Loss: 0.2621 Acc: 0.8975
val Loss: 0.1714 Acc: 0.9412
Epoch 18/24
----------
train Loss: 0.3069 Acc: 0.8893
val Loss: 0.1892 Acc: 0.9216
Epoch 19/24
----------
train Loss: 0.2038 Acc: 0.9221
val Loss: 0.1868 Acc: 0.9150
Epoch 20/24
----------
train Loss: 0.2525 Acc: 0.8975
val Loss: 0.1897 Acc: 0.9281
Epoch 21/24
----------
train Loss: 0.2515 Acc: 0.8852
val Loss: 0.2172 Acc: 0.9020
Epoch 22/24
----------
train Loss: 0.3098 Acc: 0.8730
val Loss: 0.1718 Acc: 0.9412
Epoch 23/24
----------
train Loss: 0.2756 Acc: 0.8730
val Loss: 0.2057 Acc: 0.9216
Epoch 24/24
----------
train Loss: 0.2886 Acc: 0.8852
val Loss: 0.1722 Acc: 0.9542
Training complete in 1m 4s
Best val Acc: 0.954248
visualize_model(model_ft)

ConvNet 作为固定特征提取器¶
在这里,我们需要冻结除最后一层之外的所有网络。我们需要设置 requires_grad = False
来冻结参数,以便在 backward()
中不计算梯度。
您可以在 此处 的文档中阅读更多相关信息。
model_conv = torchvision.models.resnet18(weights='IMAGENET1K_V1')
for param in model_conv.parameters():
param.requires_grad = False
# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)
model_conv = model_conv.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
训练和评估¶
在 CPU 上,这将花费大约是之前场景一半的时间。这是预期的,因为大多数网络不需要计算梯度。但是,前向传播仍然需要计算。
model_conv = train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, num_epochs=25)
Epoch 0/24
----------
train Loss: 0.6996 Acc: 0.6516
val Loss: 0.2014 Acc: 0.9346
Epoch 1/24
----------
train Loss: 0.4233 Acc: 0.8033
val Loss: 0.2656 Acc: 0.8758
Epoch 2/24
----------
train Loss: 0.4603 Acc: 0.7869
val Loss: 0.1847 Acc: 0.9477
Epoch 3/24
----------
train Loss: 0.3096 Acc: 0.8566
val Loss: 0.1747 Acc: 0.9477
Epoch 4/24
----------
train Loss: 0.4427 Acc: 0.8156
val Loss: 0.1630 Acc: 0.9477
Epoch 5/24
----------
train Loss: 0.5505 Acc: 0.7828
val Loss: 0.1643 Acc: 0.9477
Epoch 6/24
----------
train Loss: 0.3004 Acc: 0.8607
val Loss: 0.1744 Acc: 0.9542
Epoch 7/24
----------
train Loss: 0.4083 Acc: 0.8361
val Loss: 0.1892 Acc: 0.9412
Epoch 8/24
----------
train Loss: 0.4483 Acc: 0.7910
val Loss: 0.1984 Acc: 0.9477
Epoch 9/24
----------
train Loss: 0.3335 Acc: 0.8279
val Loss: 0.1942 Acc: 0.9412
Epoch 10/24
----------
train Loss: 0.2413 Acc: 0.8934
val Loss: 0.2001 Acc: 0.9477
Epoch 11/24
----------
train Loss: 0.3107 Acc: 0.8689
val Loss: 0.1801 Acc: 0.9412
Epoch 12/24
----------
train Loss: 0.3032 Acc: 0.8689
val Loss: 0.1669 Acc: 0.9477
Epoch 13/24
----------
train Loss: 0.3587 Acc: 0.8525
val Loss: 0.1900 Acc: 0.9477
Epoch 14/24
----------
train Loss: 0.2771 Acc: 0.8893
val Loss: 0.2317 Acc: 0.9216
Epoch 15/24
----------
train Loss: 0.3064 Acc: 0.8852
val Loss: 0.1909 Acc: 0.9477
Epoch 16/24
----------
train Loss: 0.4243 Acc: 0.8238
val Loss: 0.2227 Acc: 0.9346
Epoch 17/24
----------
train Loss: 0.3297 Acc: 0.8238
val Loss: 0.1916 Acc: 0.9412
Epoch 18/24
----------
train Loss: 0.4235 Acc: 0.8238
val Loss: 0.1766 Acc: 0.9477
Epoch 19/24
----------
train Loss: 0.2500 Acc: 0.8934
val Loss: 0.2003 Acc: 0.9477
Epoch 20/24
----------
train Loss: 0.2413 Acc: 0.8934
val Loss: 0.1821 Acc: 0.9477
Epoch 21/24
----------
train Loss: 0.3762 Acc: 0.8115
val Loss: 0.1842 Acc: 0.9412
Epoch 22/24
----------
train Loss: 0.3485 Acc: 0.8566
val Loss: 0.2166 Acc: 0.9281
Epoch 23/24
----------
train Loss: 0.3625 Acc: 0.8361
val Loss: 0.1747 Acc: 0.9412
Epoch 24/24
----------
train Loss: 0.3840 Acc: 0.8320
val Loss: 0.1768 Acc: 0.9412
Training complete in 0m 32s
Best val Acc: 0.954248
visualize_model(model_conv)
plt.ioff()
plt.show()

自定义图像上的推理¶
使用训练好的模型对自定义图像进行预测,并将预测的类别标签与图像一起可视化。
def visualize_model_predictions(model,img_path):
was_training = model.training
model.eval()
img = Image.open(img_path)
img = data_transforms['val'](img)
img = img.unsqueeze(0)
img = img.to(device)
with torch.no_grad():
outputs = model(img)
_, preds = torch.max(outputs, 1)
ax = plt.subplot(2,2,1)
ax.axis('off')
ax.set_title(f'Predicted: {class_names[preds[0]]}')
imshow(img.cpu().data[0])
model.train(mode=was_training)
visualize_model_predictions(
model_conv,
img_path='data/hymenoptera_data/val/bees/72100438_73de9f17af.jpg'
)
plt.ioff()
plt.show()
