快捷方式

学习基础 || 快速入门 || 张量 || 数据集和数据加载器 || 变换 || 构建模型 || 自动微分 || 优化 || 保存和加载模型

构建神经网络

神经网络由对数据执行运算的层/模块组成。 torch.nn 命名空间提供了构建您自己的神经网络所需的所有构建块。PyTorch 中的每个模块都是 nn.Module 的子类。神经网络本身就是一个模块,由其他模块(层)组成。这种嵌套结构允许轻松构建和管理复杂的架构。

在以下部分中,我们将构建一个神经网络来对 FashionMNIST 数据集中的图像进行分类。

import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

获取用于训练的设备

我们希望能够在 GPU 或 MPS 等硬件加速器上训练我们的模型(如果可用)。让我们检查一下 torch.cudatorch.backends.mps 是否可用,否则我们将使用 CPU。

device = (
    "cuda"
    if torch.cuda.is_available()
    else "mps"
    if torch.backends.mps.is_available()
    else "cpu"
)
print(f"Using {device} device")
Using cuda device

定义类

我们通过子类化 nn.Module 来定义神经网络,并在 __init__ 中初始化神经网络层。每个 nn.Module 子类都在 forward 方法中实现对输入数据的操作。

class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

我们创建 NeuralNetwork 的实例,并将它移动到 device 上,然后打印它的结构。

model = NeuralNetwork().to(device)
print(model)
NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
  )
)

要使用模型,我们将输入数据传递给它。这将执行模型的 forward 方法,以及一些 后台操作。不要直接调用 model.forward()

在输入数据上调用模型将返回一个二维张量,其中 dim=0 对应于每个输出的 10 个原始预测值(每个类别一个),dim=1 对应于每个输出的各个值。我们通过将它传递给 nn.Softmax 模块的实例来获得预测概率。

X = torch.rand(1, 28, 28, device=device)
logits = model(X)
pred_probab = nn.Softmax(dim=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")
Predicted class: tensor([7], device='cuda:0')

模型层

让我们分解一下 FashionMNIST 模型中的层。为了说明这一点,我们将取一个大小为 28x28 的 3 张图像的样本小批量,看看它在通过网络时会发生什么。

input_image = torch.rand(3,28,28)
print(input_image.size())
torch.Size([3, 28, 28])

nn.Flatten

我们初始化 nn.Flatten 层,将每个 2D 28x28 图像转换为 784 个像素值的连续数组(小批量维度(在 dim=0 处)保持不变)。

torch.Size([3, 784])

nn.Linear

线性层 是一个模块,它使用其存储的权重和偏差对输入应用线性变换。

layer1 = nn.Linear(in_features=28*28, out_features=20)
hidden1 = layer1(flat_image)
print(hidden1.size())
torch.Size([3, 20])

nn.ReLU

非线性激活是模型的输入和输出之间创建复杂映射的关键。它们在线性变换之后应用,以引入非线性,帮助神经网络学习各种现象。

在这个模型中,我们在线性层之间使用了 nn.ReLU,但还有其他激活可以在模型中引入非线性。

print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")
Before ReLU: tensor([[ 0.4158, -0.0130, -0.1144,  0.3960,  0.1476, -0.0690, -0.0269,  0.2690,
          0.1353,  0.1975,  0.4484,  0.0753,  0.4455,  0.5321, -0.1692,  0.4504,
          0.2476, -0.1787, -0.2754,  0.2462],
        [ 0.2326,  0.0623, -0.2984,  0.2878,  0.2767, -0.5434, -0.5051,  0.4339,
          0.0302,  0.1634,  0.5649, -0.0055,  0.2025,  0.4473, -0.2333,  0.6611,
          0.1883, -0.1250,  0.0820,  0.2778],
        [ 0.3325,  0.2654,  0.1091,  0.0651,  0.3425, -0.3880, -0.0152,  0.2298,
          0.3872,  0.0342,  0.8503,  0.0937,  0.1796,  0.5007, -0.1897,  0.4030,
          0.1189, -0.3237,  0.2048,  0.4343]], grad_fn=<AddmmBackward0>)


After ReLU: tensor([[0.4158, 0.0000, 0.0000, 0.3960, 0.1476, 0.0000, 0.0000, 0.2690, 0.1353,
         0.1975, 0.4484, 0.0753, 0.4455, 0.5321, 0.0000, 0.4504, 0.2476, 0.0000,
         0.0000, 0.2462],
        [0.2326, 0.0623, 0.0000, 0.2878, 0.2767, 0.0000, 0.0000, 0.4339, 0.0302,
         0.1634, 0.5649, 0.0000, 0.2025, 0.4473, 0.0000, 0.6611, 0.1883, 0.0000,
         0.0820, 0.2778],
        [0.3325, 0.2654, 0.1091, 0.0651, 0.3425, 0.0000, 0.0000, 0.2298, 0.3872,
         0.0342, 0.8503, 0.0937, 0.1796, 0.5007, 0.0000, 0.4030, 0.1189, 0.0000,
         0.2048, 0.4343]], grad_fn=<ReluBackward0>)

nn.Sequential

nn.Sequential 是模块的有序容器。数据按照定义的顺序依次通过所有模块。您可以使用顺序容器来快速构建网络,例如 seq_modules

nn.Softmax

神经网络的最后一个线性层返回logits - [-infty, infty] 范围内的原始值 - 这些值将传递给 nn.Softmax 模块。logits 被缩放到 [0, 1] 范围内的值,表示模型对每个类别的预测概率。 dim 参数指示沿哪个维度值必须加起来为 1。

模型参数

神经网络中的许多层都是参数化的,即具有在训练过程中优化的相关权重和偏差。子类化 nn.Module 会自动跟踪模型对象中定义的所有字段,并使用模型的 parameters()named_parameters() 方法使所有参数可访问。

在这个示例中,我们遍历每个参数,并打印其大小及其值的预览。

print(f"Model structure: {model}\n\n")

for name, param in model.named_parameters():
    print(f"Layer: {name} | Size: {param.size()} | Values : {param[:2]} \n")
Model structure: NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
  )
)


Layer: linear_relu_stack.0.weight | Size: torch.Size([512, 784]) | Values : tensor([[ 0.0273,  0.0296, -0.0084,  ..., -0.0142,  0.0093,  0.0135],
        [-0.0188, -0.0354,  0.0187,  ..., -0.0106, -0.0001,  0.0115]],
       device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.0.bias | Size: torch.Size([512]) | Values : tensor([-0.0155, -0.0327], device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.2.weight | Size: torch.Size([512, 512]) | Values : tensor([[ 0.0116,  0.0293, -0.0280,  ...,  0.0334, -0.0078,  0.0298],
        [ 0.0095,  0.0038,  0.0009,  ..., -0.0365, -0.0011, -0.0221]],
       device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.2.bias | Size: torch.Size([512]) | Values : tensor([ 0.0148, -0.0256], device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.4.weight | Size: torch.Size([10, 512]) | Values : tensor([[-0.0147, -0.0229,  0.0180,  ..., -0.0013,  0.0177,  0.0070],
        [-0.0202, -0.0417, -0.0279,  ..., -0.0441,  0.0185, -0.0268]],
       device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.4.bias | Size: torch.Size([10]) | Values : tensor([ 0.0070, -0.0411], device='cuda:0', grad_fn=<SliceBackward0>)

文档

Access comprehensive developer documentation for PyTorch

View Docs

教程

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources