注意
点击此处下载完整示例代码
剪枝教程¶
创建于:2019 年 7 月 22 日 | 最后更新:2023 年 11 月 02 日 | 最后验证:2024 年 11 月 05 日
作者: Michela Paganini
最先进的深度学习技术依赖于难以部署的过参数化模型。相反,已知生物神经网络使用高效的稀疏连接。识别压缩模型的最佳技术(通过减少其中的参数数量)对于在不牺牲准确性的情况下减少内存、电池和硬件消耗非常重要。这反过来使您能够在设备上部署轻量级模型,并通过私有设备端计算来保证隐私。在研究前沿,剪枝用于研究过参数化和欠参数化网络之间学习动态的差异,研究幸运稀疏子网络和初始化(“彩票”)作为破坏性神经架构搜索技术的作用等等。
在本教程中,您将学习如何使用 torch.nn.utils.prune
来稀疏化您的神经网络,以及如何扩展它来实现您自己的自定义剪枝技术。
要求¶
"torch>=1.4.0a0+8e8a5e0"
import torch
from torch import nn
import torch.nn.utils.prune as prune
import torch.nn.functional as F
创建模型¶
在本教程中,我们使用 LeCun 等人于 1998 年提出的 LeNet 架构。
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square conv kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5x5 image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, int(x.nelement() / x.shape[0]))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
model = LeNet().to(device=device)
检查模块¶
让我们检查 LeNet 模型中(未剪枝的)conv1
层。目前,它将包含两个参数 weight
和 bias
,并且没有缓冲区。
module = model.conv1
print(list(module.named_parameters()))
[('weight', Parameter containing:
tensor([[[[ 0.1529, 0.1660, -0.0469, 0.1837, -0.0438],
[ 0.0404, -0.0974, 0.1175, 0.1763, -0.1467],
[ 0.1738, 0.0374, 0.1478, 0.0271, 0.0964],
[-0.0282, 0.1542, 0.0296, -0.0934, 0.0510],
[-0.0921, -0.0235, -0.0812, 0.1327, -0.1579]]],
[[[-0.0922, -0.0565, -0.1203, 0.0189, -0.1975],
[ 0.1806, -0.1699, 0.1544, 0.0333, -0.0649],
[ 0.1236, 0.0312, 0.1616, 0.0219, -0.0631],
[ 0.0537, -0.0542, 0.0842, 0.1786, 0.1156],
[-0.0874, 0.1155, 0.0358, 0.1016, -0.1219]]],
[[[-0.1980, -0.0773, -0.1534, 0.1641, 0.0576],
[ 0.0828, 0.0633, -0.0035, 0.1565, -0.1421],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0667, 0.1925, -0.1651, -0.1984]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.1033, -0.1363, 0.1061, -0.0808, 0.1214],
[-0.0475, 0.1144, -0.1554, -0.1009, 0.0610],
[ 0.0423, -0.0510, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0675, -0.0709, -0.1935]]],
[[[-0.1145, 0.0500, -0.0264, -0.1452, 0.0047],
[-0.1366, -0.1697, -0.1101, -0.1750, -0.1273],
[ 0.1999, 0.0378, 0.0616, -0.1865, -0.1314],
[-0.0666, 0.0313, -0.1760, -0.0862, -0.1197],
[ 0.0006, -0.0744, -0.0139, -0.1355, -0.1373]]],
[[[-0.1167, -0.0685, -0.1579, 0.1677, -0.0397],
[ 0.1721, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.1988, 0.0572, -0.0437],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.1033, 0.1615, 0.1822, -0.1586]]]], device='cuda:0',
requires_grad=True)), ('bias', Parameter containing:
tensor([ 0.0503, -0.0860, -0.0219, -0.1497, 0.1822, -0.1468], device='cuda:0',
requires_grad=True))]
print(list(module.named_buffers()))
[]
剪枝模块¶
要剪枝模块(在本示例中为 LeNet 架构的 conv1
层),首先从 torch.nn.utils.prune
中可用的剪枝技术中选择一种(或者实现您自己的剪枝技术,通过子类化 BasePruningMethod
)。然后,指定模块和要剪枝的参数名称。最后,使用所选剪枝技术所需的适当关键字参数,指定剪枝参数。
在本示例中,我们将随机剪枝 conv1
层中名为 weight
的参数中 30% 的连接。模块作为函数的第一个参数传递;name
使用其字符串标识符标识该模块内的参数;amount
指示要剪枝的连接的百分比(如果它是介于 0. 和 1. 之间的浮点数),或者要剪枝的连接的绝对数量(如果它是非负整数)。
prune.random_unstructured(module, name="weight", amount=0.3)
Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
剪枝通过从参数中删除 weight
并用名为 weight_orig
的新参数替换它来起作用(即,将 “_orig” 附加到初始参数 name
)。weight_orig
存储张量的未剪枝版本。bias
未被剪枝,因此它将保持不变。
print(list(module.named_parameters()))
[('bias', Parameter containing:
tensor([ 0.0503, -0.0860, -0.0219, -0.1497, 0.1822, -0.1468], device='cuda:0',
requires_grad=True)), ('weight_orig', Parameter containing:
tensor([[[[ 0.1529, 0.1660, -0.0469, 0.1837, -0.0438],
[ 0.0404, -0.0974, 0.1175, 0.1763, -0.1467],
[ 0.1738, 0.0374, 0.1478, 0.0271, 0.0964],
[-0.0282, 0.1542, 0.0296, -0.0934, 0.0510],
[-0.0921, -0.0235, -0.0812, 0.1327, -0.1579]]],
[[[-0.0922, -0.0565, -0.1203, 0.0189, -0.1975],
[ 0.1806, -0.1699, 0.1544, 0.0333, -0.0649],
[ 0.1236, 0.0312, 0.1616, 0.0219, -0.0631],
[ 0.0537, -0.0542, 0.0842, 0.1786, 0.1156],
[-0.0874, 0.1155, 0.0358, 0.1016, -0.1219]]],
[[[-0.1980, -0.0773, -0.1534, 0.1641, 0.0576],
[ 0.0828, 0.0633, -0.0035, 0.1565, -0.1421],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0667, 0.1925, -0.1651, -0.1984]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.1033, -0.1363, 0.1061, -0.0808, 0.1214],
[-0.0475, 0.1144, -0.1554, -0.1009, 0.0610],
[ 0.0423, -0.0510, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0675, -0.0709, -0.1935]]],
[[[-0.1145, 0.0500, -0.0264, -0.1452, 0.0047],
[-0.1366, -0.1697, -0.1101, -0.1750, -0.1273],
[ 0.1999, 0.0378, 0.0616, -0.1865, -0.1314],
[-0.0666, 0.0313, -0.1760, -0.0862, -0.1197],
[ 0.0006, -0.0744, -0.0139, -0.1355, -0.1373]]],
[[[-0.1167, -0.0685, -0.1579, 0.1677, -0.0397],
[ 0.1721, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.1988, 0.0572, -0.0437],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.1033, 0.1615, 0.1822, -0.1586]]]], device='cuda:0',
requires_grad=True))]
由上面选择的剪枝技术生成的剪枝掩码保存为名为 weight_mask
的模块缓冲区(即,将 “_mask” 附加到初始参数 name
)。
print(list(module.named_buffers()))
[('weight_mask', tensor([[[[1., 1., 1., 1., 1.],
[1., 0., 1., 1., 1.],
[1., 0., 0., 1., 1.],
[1., 0., 1., 1., 1.],
[1., 0., 0., 1., 1.]]],
[[[1., 1., 1., 0., 1.],
[1., 1., 1., 1., 1.],
[0., 1., 1., 1., 0.],
[1., 1., 0., 1., 0.],
[0., 1., 0., 1., 1.]]],
[[[1., 0., 0., 0., 1.],
[1., 0., 1., 1., 0.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 0., 1., 1., 0.]]],
[[[1., 1., 1., 1., 1.],
[0., 1., 1., 1., 0.],
[1., 1., 1., 0., 1.],
[0., 0., 1., 1., 1.],
[1., 1., 0., 1., 1.]]],
[[[1., 0., 1., 1., 1.],
[1., 1., 0., 0., 0.],
[1., 1., 0., 0., 0.],
[0., 1., 1., 0., 1.],
[1., 0., 0., 0., 1.]]],
[[[1., 0., 1., 0., 1.],
[0., 1., 1., 1., 1.],
[1., 1., 0., 1., 0.],
[1., 1., 1., 1., 1.],
[1., 0., 0., 1., 1.]]]], device='cuda:0'))]
为了使前向传播在不修改的情况下工作,weight
属性需要存在。torch.nn.utils.prune
中实现的剪枝技术计算权重的剪枝版本(通过将掩码与原始参数组合)并将它们存储在属性 weight
中。请注意,这不再是模块的参数,现在它只是一个属性。
print(module.weight)
tensor([[[[ 0.1529, 0.1660, -0.0469, 0.1837, -0.0438],
[ 0.0404, -0.0000, 0.1175, 0.1763, -0.1467],
[ 0.1738, 0.0000, 0.0000, 0.0271, 0.0964],
[-0.0282, 0.0000, 0.0296, -0.0934, 0.0510],
[-0.0921, -0.0000, -0.0000, 0.1327, -0.1579]]],
[[[-0.0922, -0.0565, -0.1203, 0.0000, -0.1975],
[ 0.1806, -0.1699, 0.1544, 0.0333, -0.0649],
[ 0.0000, 0.0312, 0.1616, 0.0219, -0.0000],
[ 0.0537, -0.0542, 0.0000, 0.1786, 0.0000],
[-0.0000, 0.1155, 0.0000, 0.1016, -0.1219]]],
[[[-0.1980, -0.0000, -0.0000, 0.0000, 0.0576],
[ 0.0828, 0.0000, -0.0035, 0.1565, -0.0000],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0000, 0.1925, -0.1651, -0.0000]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.0000, -0.1363, 0.1061, -0.0808, 0.0000],
[-0.0475, 0.1144, -0.1554, -0.0000, 0.0610],
[ 0.0000, -0.0000, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0000, -0.0709, -0.1935]]],
[[[-0.1145, 0.0000, -0.0264, -0.1452, 0.0047],
[-0.1366, -0.1697, -0.0000, -0.0000, -0.0000],
[ 0.1999, 0.0378, 0.0000, -0.0000, -0.0000],
[-0.0000, 0.0313, -0.1760, -0.0000, -0.1197],
[ 0.0006, -0.0000, -0.0000, -0.0000, -0.1373]]],
[[[-0.1167, -0.0000, -0.1579, 0.0000, -0.0397],
[ 0.0000, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.0000, 0.0572, -0.0000],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.0000, 0.0000, 0.1822, -0.1586]]]], device='cuda:0',
grad_fn=<MulBackward0>)
最后,剪枝是在每次前向传播之前使用 PyTorch 的 forward_pre_hooks
应用的。具体来说,当模块被剪枝时(就像我们在这里所做的那样),它将为与其关联的每个被剪枝的参数获取一个 forward_pre_hook
。在这种情况下,由于到目前为止我们只剪枝了名为 weight
的原始参数,因此只会存在一个钩子。
print(module._forward_pre_hooks)
OrderedDict([(0, <torch.nn.utils.prune.RandomUnstructured object at 0x7fd608603490>)])
为了完整起见,我们现在也可以剪枝 bias
,以查看模块的参数、缓冲区、钩子和属性如何变化。仅仅为了尝试另一种剪枝技术,我们在这里通过 L1 范数剪枝 bias 中 3 个最小的条目,如 l1_unstructured
剪枝函数中所实现的那样。
prune.l1_unstructured(module, name="bias", amount=3)
Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
我们现在期望命名参数包括 weight_orig
(之前的)和 bias_orig
。缓冲区将包括 weight_mask
和 bias_mask
。两个张量的剪枝版本将作为模块属性存在,并且模块现在将有两个 forward_pre_hooks
。
print(list(module.named_parameters()))
[('weight_orig', Parameter containing:
tensor([[[[ 0.1529, 0.1660, -0.0469, 0.1837, -0.0438],
[ 0.0404, -0.0974, 0.1175, 0.1763, -0.1467],
[ 0.1738, 0.0374, 0.1478, 0.0271, 0.0964],
[-0.0282, 0.1542, 0.0296, -0.0934, 0.0510],
[-0.0921, -0.0235, -0.0812, 0.1327, -0.1579]]],
[[[-0.0922, -0.0565, -0.1203, 0.0189, -0.1975],
[ 0.1806, -0.1699, 0.1544, 0.0333, -0.0649],
[ 0.1236, 0.0312, 0.1616, 0.0219, -0.0631],
[ 0.0537, -0.0542, 0.0842, 0.1786, 0.1156],
[-0.0874, 0.1155, 0.0358, 0.1016, -0.1219]]],
[[[-0.1980, -0.0773, -0.1534, 0.1641, 0.0576],
[ 0.0828, 0.0633, -0.0035, 0.1565, -0.1421],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0667, 0.1925, -0.1651, -0.1984]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.1033, -0.1363, 0.1061, -0.0808, 0.1214],
[-0.0475, 0.1144, -0.1554, -0.1009, 0.0610],
[ 0.0423, -0.0510, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0675, -0.0709, -0.1935]]],
[[[-0.1145, 0.0500, -0.0264, -0.1452, 0.0047],
[-0.1366, -0.1697, -0.1101, -0.1750, -0.1273],
[ 0.1999, 0.0378, 0.0616, -0.1865, -0.1314],
[-0.0666, 0.0313, -0.1760, -0.0862, -0.1197],
[ 0.0006, -0.0744, -0.0139, -0.1355, -0.1373]]],
[[[-0.1167, -0.0685, -0.1579, 0.1677, -0.0397],
[ 0.1721, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.1988, 0.0572, -0.0437],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.1033, 0.1615, 0.1822, -0.1586]]]], device='cuda:0',
requires_grad=True)), ('bias_orig', Parameter containing:
tensor([ 0.0503, -0.0860, -0.0219, -0.1497, 0.1822, -0.1468], device='cuda:0',
requires_grad=True))]
print(list(module.named_buffers()))
[('weight_mask', tensor([[[[1., 1., 1., 1., 1.],
[1., 0., 1., 1., 1.],
[1., 0., 0., 1., 1.],
[1., 0., 1., 1., 1.],
[1., 0., 0., 1., 1.]]],
[[[1., 1., 1., 0., 1.],
[1., 1., 1., 1., 1.],
[0., 1., 1., 1., 0.],
[1., 1., 0., 1., 0.],
[0., 1., 0., 1., 1.]]],
[[[1., 0., 0., 0., 1.],
[1., 0., 1., 1., 0.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 0., 1., 1., 0.]]],
[[[1., 1., 1., 1., 1.],
[0., 1., 1., 1., 0.],
[1., 1., 1., 0., 1.],
[0., 0., 1., 1., 1.],
[1., 1., 0., 1., 1.]]],
[[[1., 0., 1., 1., 1.],
[1., 1., 0., 0., 0.],
[1., 1., 0., 0., 0.],
[0., 1., 1., 0., 1.],
[1., 0., 0., 0., 1.]]],
[[[1., 0., 1., 0., 1.],
[0., 1., 1., 1., 1.],
[1., 1., 0., 1., 0.],
[1., 1., 1., 1., 1.],
[1., 0., 0., 1., 1.]]]], device='cuda:0')), ('bias_mask', tensor([0., 0., 0., 1., 1., 1.], device='cuda:0'))]
print(module.bias)
tensor([ 0.0000, -0.0000, -0.0000, -0.1497, 0.1822, -0.1468], device='cuda:0',
grad_fn=<MulBackward0>)
print(module._forward_pre_hooks)
OrderedDict([(0, <torch.nn.utils.prune.RandomUnstructured object at 0x7fd608603490>), (1, <torch.nn.utils.prune.L1Unstructured object at 0x7fd608602d70>)])
迭代剪枝¶
模块中的同一参数可以多次剪枝,各种剪枝调用的效果等于串联应用的各种掩码的组合。新掩码与旧掩码的组合由 PruningContainer
的 compute_mask
方法处理。
假设,例如,我们现在想要进一步剪枝 module.weight
,这次使用沿张量第 0 轴(第 0 轴对应于卷积层的输出通道,并且对于 conv1
具有维度 6)的结构化剪枝,基于通道的 L2 范数。这可以使用 ln_structured
函数实现,其中 n=2
且 dim=0
。
prune.ln_structured(module, name="weight", amount=0.5, n=2, dim=0)
# As we can verify, this will zero out all the connections corresponding to
# 50% (3 out of 6) of the channels, while preserving the action of the
# previous mask.
print(module.weight)
tensor([[[[ 0.0000, 0.0000, -0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[-0.0000, 0.0000, 0.0000, -0.0000, 0.0000],
[-0.0000, -0.0000, -0.0000, 0.0000, -0.0000]]],
[[[-0.0000, -0.0000, -0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, 0.0000],
[-0.0000, 0.0000, 0.0000, 0.0000, -0.0000]]],
[[[-0.1980, -0.0000, -0.0000, 0.0000, 0.0576],
[ 0.0828, 0.0000, -0.0035, 0.1565, -0.0000],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0000, 0.1925, -0.1651, -0.0000]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.0000, -0.1363, 0.1061, -0.0808, 0.0000],
[-0.0475, 0.1144, -0.1554, -0.0000, 0.0610],
[ 0.0000, -0.0000, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0000, -0.0709, -0.1935]]],
[[[-0.0000, 0.0000, -0.0000, -0.0000, 0.0000],
[-0.0000, -0.0000, -0.0000, -0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, -0.0000, -0.0000],
[-0.0000, 0.0000, -0.0000, -0.0000, -0.0000],
[ 0.0000, -0.0000, -0.0000, -0.0000, -0.0000]]],
[[[-0.1167, -0.0000, -0.1579, 0.0000, -0.0397],
[ 0.0000, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.0000, 0.0572, -0.0000],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.0000, 0.0000, 0.1822, -0.1586]]]], device='cuda:0',
grad_fn=<MulBackward0>)
相应的钩子现在将是 torch.nn.utils.prune.PruningContainer
类型,并将存储应用于 weight
参数的剪枝历史记录。
[<torch.nn.utils.prune.RandomUnstructured object at 0x7fd608603490>, <torch.nn.utils.prune.LnStructured object at 0x7fd608602cb0>]
序列化剪枝模型¶
所有相关的张量,包括掩码缓冲区和用于计算剪枝张量的原始参数都存储在模型的 state_dict
中,因此如果需要,可以很容易地序列化和保存。
print(model.state_dict().keys())
odict_keys(['conv1.weight_orig', 'conv1.bias_orig', 'conv1.weight_mask', 'conv1.bias_mask', 'conv2.weight', 'conv2.bias', 'fc1.weight', 'fc1.bias', 'fc2.weight', 'fc2.bias', 'fc3.weight', 'fc3.bias'])
删除剪枝重参数化¶
为了使剪枝永久化,删除 weight_orig
和 weight_mask
方面的重参数化,并删除 forward_pre_hook
,我们可以使用 torch.nn.utils.prune
中的 remove
功能。请注意,这不会撤消剪枝,就好像它从未发生过一样。相反,它只是通过将参数 weight
重新分配给模型参数的剪枝版本,使其永久化。
在删除重参数化之前
print(list(module.named_parameters()))
[('weight_orig', Parameter containing:
tensor([[[[ 0.1529, 0.1660, -0.0469, 0.1837, -0.0438],
[ 0.0404, -0.0974, 0.1175, 0.1763, -0.1467],
[ 0.1738, 0.0374, 0.1478, 0.0271, 0.0964],
[-0.0282, 0.1542, 0.0296, -0.0934, 0.0510],
[-0.0921, -0.0235, -0.0812, 0.1327, -0.1579]]],
[[[-0.0922, -0.0565, -0.1203, 0.0189, -0.1975],
[ 0.1806, -0.1699, 0.1544, 0.0333, -0.0649],
[ 0.1236, 0.0312, 0.1616, 0.0219, -0.0631],
[ 0.0537, -0.0542, 0.0842, 0.1786, 0.1156],
[-0.0874, 0.1155, 0.0358, 0.1016, -0.1219]]],
[[[-0.1980, -0.0773, -0.1534, 0.1641, 0.0576],
[ 0.0828, 0.0633, -0.0035, 0.1565, -0.1421],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0667, 0.1925, -0.1651, -0.1984]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.1033, -0.1363, 0.1061, -0.0808, 0.1214],
[-0.0475, 0.1144, -0.1554, -0.1009, 0.0610],
[ 0.0423, -0.0510, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0675, -0.0709, -0.1935]]],
[[[-0.1145, 0.0500, -0.0264, -0.1452, 0.0047],
[-0.1366, -0.1697, -0.1101, -0.1750, -0.1273],
[ 0.1999, 0.0378, 0.0616, -0.1865, -0.1314],
[-0.0666, 0.0313, -0.1760, -0.0862, -0.1197],
[ 0.0006, -0.0744, -0.0139, -0.1355, -0.1373]]],
[[[-0.1167, -0.0685, -0.1579, 0.1677, -0.0397],
[ 0.1721, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.1988, 0.0572, -0.0437],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.1033, 0.1615, 0.1822, -0.1586]]]], device='cuda:0',
requires_grad=True)), ('bias_orig', Parameter containing:
tensor([ 0.0503, -0.0860, -0.0219, -0.1497, 0.1822, -0.1468], device='cuda:0',
requires_grad=True))]
print(list(module.named_buffers()))
[('weight_mask', tensor([[[[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]],
[[[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]],
[[[1., 0., 0., 0., 1.],
[1., 0., 1., 1., 0.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 0., 1., 1., 0.]]],
[[[1., 1., 1., 1., 1.],
[0., 1., 1., 1., 0.],
[1., 1., 1., 0., 1.],
[0., 0., 1., 1., 1.],
[1., 1., 0., 1., 1.]]],
[[[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]],
[[[1., 0., 1., 0., 1.],
[0., 1., 1., 1., 1.],
[1., 1., 0., 1., 0.],
[1., 1., 1., 1., 1.],
[1., 0., 0., 1., 1.]]]], device='cuda:0')), ('bias_mask', tensor([0., 0., 0., 1., 1., 1.], device='cuda:0'))]
print(module.weight)
tensor([[[[ 0.0000, 0.0000, -0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[-0.0000, 0.0000, 0.0000, -0.0000, 0.0000],
[-0.0000, -0.0000, -0.0000, 0.0000, -0.0000]]],
[[[-0.0000, -0.0000, -0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, 0.0000],
[-0.0000, 0.0000, 0.0000, 0.0000, -0.0000]]],
[[[-0.1980, -0.0000, -0.0000, 0.0000, 0.0576],
[ 0.0828, 0.0000, -0.0035, 0.1565, -0.0000],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0000, 0.1925, -0.1651, -0.0000]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.0000, -0.1363, 0.1061, -0.0808, 0.0000],
[-0.0475, 0.1144, -0.1554, -0.0000, 0.0610],
[ 0.0000, -0.0000, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0000, -0.0709, -0.1935]]],
[[[-0.0000, 0.0000, -0.0000, -0.0000, 0.0000],
[-0.0000, -0.0000, -0.0000, -0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, -0.0000, -0.0000],
[-0.0000, 0.0000, -0.0000, -0.0000, -0.0000],
[ 0.0000, -0.0000, -0.0000, -0.0000, -0.0000]]],
[[[-0.1167, -0.0000, -0.1579, 0.0000, -0.0397],
[ 0.0000, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.0000, 0.0572, -0.0000],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.0000, 0.0000, 0.1822, -0.1586]]]], device='cuda:0',
grad_fn=<MulBackward0>)
在删除重参数化之后
prune.remove(module, 'weight')
print(list(module.named_parameters()))
[('bias_orig', Parameter containing:
tensor([ 0.0503, -0.0860, -0.0219, -0.1497, 0.1822, -0.1468], device='cuda:0',
requires_grad=True)), ('weight', Parameter containing:
tensor([[[[ 0.0000, 0.0000, -0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[-0.0000, 0.0000, 0.0000, -0.0000, 0.0000],
[-0.0000, -0.0000, -0.0000, 0.0000, -0.0000]]],
[[[-0.0000, -0.0000, -0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, 0.0000],
[-0.0000, 0.0000, 0.0000, 0.0000, -0.0000]]],
[[[-0.1980, -0.0000, -0.0000, 0.0000, 0.0576],
[ 0.0828, 0.0000, -0.0035, 0.1565, -0.0000],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0000, 0.1925, -0.1651, -0.0000]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.0000, -0.1363, 0.1061, -0.0808, 0.0000],
[-0.0475, 0.1144, -0.1554, -0.0000, 0.0610],
[ 0.0000, -0.0000, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0000, -0.0709, -0.1935]]],
[[[-0.0000, 0.0000, -0.0000, -0.0000, 0.0000],
[-0.0000, -0.0000, -0.0000, -0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, -0.0000, -0.0000],
[-0.0000, 0.0000, -0.0000, -0.0000, -0.0000],
[ 0.0000, -0.0000, -0.0000, -0.0000, -0.0000]]],
[[[-0.1167, -0.0000, -0.1579, 0.0000, -0.0397],
[ 0.0000, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.0000, 0.0572, -0.0000],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.0000, 0.0000, 0.1822, -0.1586]]]], device='cuda:0',
requires_grad=True))]
print(list(module.named_buffers()))
[('bias_mask', tensor([0., 0., 0., 1., 1., 1.], device='cuda:0'))]
剪枝模型中的多个参数¶
通过指定所需的剪枝技术和参数,我们可以轻松地剪枝网络中的多个张量,也许可以根据它们的类型进行剪枝,正如我们将在本示例中看到的那样。
new_model = LeNet()
for name, module in new_model.named_modules():
# prune 20% of connections in all 2D-conv layers
if isinstance(module, torch.nn.Conv2d):
prune.l1_unstructured(module, name='weight', amount=0.2)
# prune 40% of connections in all linear layers
elif isinstance(module, torch.nn.Linear):
prune.l1_unstructured(module, name='weight', amount=0.4)
print(dict(new_model.named_buffers()).keys()) # to verify that all masks exist
dict_keys(['conv1.weight_mask', 'conv2.weight_mask', 'fc1.weight_mask', 'fc2.weight_mask', 'fc3.weight_mask'])
全局剪枝¶
到目前为止,我们只研究了通常被称为“局部”剪枝的方法,即逐个剪枝模型中的张量,通过将每个条目的统计信息(权重幅度、激活、梯度等)专门与该张量中的其他条目进行比较。然而,一种常见且可能更强大的技术是一次性剪枝模型,例如,删除整个模型中最低 20% 的连接,而不是删除每层中最低 20% 的连接。这可能会导致每层的剪枝百分比不同。让我们看看如何使用 torch.nn.utils.prune
中的 global_unstructured
来做到这一点。
model = LeNet()
parameters_to_prune = (
(model.conv1, 'weight'),
(model.conv2, 'weight'),
(model.fc1, 'weight'),
(model.fc2, 'weight'),
(model.fc3, 'weight'),
)
prune.global_unstructured(
parameters_to_prune,
pruning_method=prune.L1Unstructured,
amount=0.2,
)
现在我们可以检查每个剪枝参数中引起的稀疏性,这在每层中都不会等于 20%。但是,全局稀疏性将(大约)为 20%。
print(
"Sparsity in conv1.weight: {:.2f}%".format(
100. * float(torch.sum(model.conv1.weight == 0))
/ float(model.conv1.weight.nelement())
)
)
print(
"Sparsity in conv2.weight: {:.2f}%".format(
100. * float(torch.sum(model.conv2.weight == 0))
/ float(model.conv2.weight.nelement())
)
)
print(
"Sparsity in fc1.weight: {:.2f}%".format(
100. * float(torch.sum(model.fc1.weight == 0))
/ float(model.fc1.weight.nelement())
)
)
print(
"Sparsity in fc2.weight: {:.2f}%".format(
100. * float(torch.sum(model.fc2.weight == 0))
/ float(model.fc2.weight.nelement())
)
)
print(
"Sparsity in fc3.weight: {:.2f}%".format(
100. * float(torch.sum(model.fc3.weight == 0))
/ float(model.fc3.weight.nelement())
)
)
print(
"Global sparsity: {:.2f}%".format(
100. * float(
torch.sum(model.conv1.weight == 0)
+ torch.sum(model.conv2.weight == 0)
+ torch.sum(model.fc1.weight == 0)
+ torch.sum(model.fc2.weight == 0)
+ torch.sum(model.fc3.weight == 0)
)
/ float(
model.conv1.weight.nelement()
+ model.conv2.weight.nelement()
+ model.fc1.weight.nelement()
+ model.fc2.weight.nelement()
+ model.fc3.weight.nelement()
)
)
)
Sparsity in conv1.weight: 4.67%
Sparsity in conv2.weight: 13.92%
Sparsity in fc1.weight: 22.16%
Sparsity in fc2.weight: 12.10%
Sparsity in fc3.weight: 11.31%
Global sparsity: 20.00%
使用自定义剪枝函数扩展 torch.nn.utils.prune
¶
要实现您自己的剪枝函数,您可以通过子类化 BasePruningMethod
基类来扩展 nn.utils.prune
模块,就像所有其他剪枝方法一样。基类为您实现了以下方法:__call__
、apply_mask
、apply
、prune
和 remove
。除了一些特殊情况外,您不必为您的新剪枝技术重新实现这些方法。但是,您必须实现 __init__
(构造函数)和 compute_mask
(关于如何根据您的剪枝技术的逻辑计算给定张量的掩码的说明)。此外,您必须指定此技术实现的剪枝类型(支持的选项是 global
、structured
和 unstructured
)。这对于确定在迭代应用剪枝的情况下如何组合掩码是必需的。换句话说,当剪枝预剪枝参数时,当前的剪枝技术应作用于参数的未剪枝部分。指定 PRUNING_TYPE
将使 PruningContainer
(处理剪枝掩码的迭代应用)能够正确识别要剪枝的参数切片。
让我们假设,例如,您想要实现一种剪枝技术,该技术剪枝张量中每隔一个条目(或者 – 如果张量先前已被剪枝 – 在张量的剩余未剪枝部分中)。这将是 PRUNING_TYPE='unstructured'
,因为它作用于层中的单个连接,而不是作用于整个单元/通道('structured
')或跨不同参数('global
')。
class FooBarPruningMethod(prune.BasePruningMethod):
"""Prune every other entry in a tensor
"""
PRUNING_TYPE = 'unstructured'
def compute_mask(self, t, default_mask):
mask = default_mask.clone()
mask.view(-1)[::2] = 0
return mask
现在,要将此应用于 nn.Module
中的参数,您还应该提供一个简单的函数来实例化该方法并应用它。
def foobar_unstructured(module, name):
"""Prunes tensor corresponding to parameter called `name` in `module`
by removing every other entry in the tensors.
Modifies module in place (and also return the modified module)
by:
1) adding a named buffer called `name+'_mask'` corresponding to the
binary mask applied to the parameter `name` by the pruning method.
The parameter `name` is replaced by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
`name+'_orig'`.
Args:
module (nn.Module): module containing the tensor to prune
name (string): parameter name within `module` on which pruning
will act.
Returns:
module (nn.Module): modified (i.e. pruned) version of the input
module
Examples:
>>> m = nn.Linear(3, 4)
>>> foobar_unstructured(m, name='bias')
"""
FooBarPruningMethod.apply(module, name)
return module
让我们试一下!
model = LeNet()
foobar_unstructured(model.fc3, name='bias')
print(model.fc3.bias_mask)
tensor([0., 1., 0., 1., 0., 1., 0., 1., 0., 1.])
脚本总运行时间: ( 0 分钟 0.295 秒)