注意
转到末尾 下载完整的示例代码
导出到 ExecuTorch 教程¶
**作者:** Angela Yi
ExecuTorch 是一个统一的 ML 堆栈,用于将 PyTorch 模型降低到边缘设备。它引入了改进的入口点来执行模型、设备和/或用例特定的优化,例如后端委托、用户定义的编译器转换、默认或用户定义的内存规划等。
在高级别,工作流程如下所示
在本教程中,我们将介绍“程序准备”步骤中的 API,以将 PyTorch 模型降低到可以加载到设备并在 ExecuTorch 运行时上运行的格式。
先决条件¶
要运行本教程,您首先需要设置您的 ExecuTorch 环境。
导出模型¶
注意:导出 API 仍在不断变化,以更好地与导出未来的长期状态保持一致。有关更多详细信息,请参阅此问题。
降低到 ExecuTorch 的第一步是将给定模型(任何可调用对象或torch.nn.Module
)导出到图形表示。这是通过torch.export
完成的,它接收一个torch.nn.Module
、一个位置参数元组,可选地接收一个关键字参数字典(在示例中未显示),以及一个动态形状列表(稍后介绍)。
import torch
from torch.export import export, ExportedProgram
class SimpleConv(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=16, kernel_size=3, padding=1
)
self.relu = torch.nn.ReLU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
a = self.conv(x)
return self.relu(a)
example_args = (torch.randn(1, 3, 256, 256),)
aten_dialect: ExportedProgram = export(SimpleConv(), example_args)
print(aten_dialect)
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_conv_weight: "f32[16, 3, 3, 3]", p_conv_bias: "f32[16]", x: "f32[1, 3, 256, 256]"):
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:64 in forward, code: a = self.conv(x)
conv2d: "f32[1, 16, 256, 256]" = torch.ops.aten.conv2d.default(x, p_conv_weight, p_conv_bias, [1, 1], [1, 1]); x = p_conv_weight = p_conv_bias = None
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:65 in forward, code: return self.relu(a)
relu: "f32[1, 16, 256, 256]" = torch.ops.aten.relu.default(conv2d); conv2d = None
return (relu,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.PARAMETER: 2>, arg=TensorArgument(name='p_conv_weight'), target='conv.weight', persistent=None), InputSpec(kind=<InputKind.PARAMETER: 2>, arg=TensorArgument(name='p_conv_bias'), target='conv.bias', persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='relu'), target=None)])
Range constraints: {}
torch.export.export
的输出是一个完全扁平化的图形(这意味着图形不包含任何模块层次结构,除非在控制流运算符的情况下)。此外,该图是纯函数式的,这意味着它不包含具有副作用的操作,例如突变或别名。
有关torch.export
结果的更多规范,请参见此处。
由torch.export
返回的图形仅包含函数式 ATen 运算符(约 2000 个运算符),我们将这些运算符称为ATen Dialect
。
表达动态性¶
默认情况下,导出流程将跟踪程序,假设所有输入形状都是静态的,因此如果我们使用与跟踪时使用的形状不同的输入形状运行程序,我们将遇到错误
import traceback as tb
class Basic(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return x + y
example_args = (torch.randn(3, 3), torch.randn(3, 3))
aten_dialect: ExportedProgram = export(Basic(), example_args)
# Works correctly
print(aten_dialect.module()(torch.ones(3, 3), torch.ones(3, 3)))
# Errors
try:
print(aten_dialect.module()(torch.ones(3, 2), torch.ones(3, 2)))
except Exception:
tb.print_exc()
tensor([[2., 2., 2.],
[2., 2., 2.],
[2., 2., 2.]])
Traceback (most recent call last):
File "/pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py", line 111, in <module>
print(aten_dialect.module()(torch.ones(3, 2), torch.ones(3, 2)))
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 784, in call_wrapped
return self._wrapped_call(self, *args, **kwargs)
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 361, in __call__
raise e
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 348, in __call__
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1844, in _call_impl
return inner()
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1769, in inner
args_kwargs_result = hook(self, args, kwargs) # type: ignore[misc]
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 632, in _fn
return fn(*args, **kwargs)
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/export/_unlift.py", line 34, in _check_input_constraints_pre_hook
return _check_input_constraints_for_graph(
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/utils.py", line 339, in _check_input_constraints_for_graph
raise RuntimeError(
RuntimeError: Expected input at *args[0].shape[1] to be equal to 3, but got 2
- 要表达某些输入形状是动态的,我们可以插入动态
形状到导出流程中。这是通过
Dim
API 完成的
from torch.export import Dim
class Basic(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return x + y
example_args = (torch.randn(3, 3), torch.randn(3, 3))
dim1_x = Dim("dim1_x", min=1, max=10)
dynamic_shapes = {"x": {1: dim1_x}, "y": {1: dim1_x}}
aten_dialect: ExportedProgram = export(
Basic(), example_args, dynamic_shapes=dynamic_shapes
)
print(aten_dialect)
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "f32[3, s0]", y: "f32[3, s0]"):
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:127 in forward, code: return x + y
add: "f32[3, s0]" = torch.ops.aten.add.Tensor(x, y); x = y = None
return (add,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='y'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='add'), target=None)])
Range constraints: {s0: VR[1, 10]}
请注意,输入arg0_1
和arg1_1
现在具有形状(3, s0),其中s0
是一个符号,表示此维度可以是一系列值。
此外,我们可以在**范围约束**中看到s0
的值范围为[1, 10],这是由我们的动态形状指定的。
现在让我们尝试使用不同的形状运行模型
# Works correctly
print(aten_dialect.module()(torch.ones(3, 3), torch.ones(3, 3)))
print(aten_dialect.module()(torch.ones(3, 2), torch.ones(3, 2)))
# Errors because it violates our constraint that input 0, dim 1 <= 10
try:
print(aten_dialect.module()(torch.ones(3, 15), torch.ones(3, 15)))
except Exception:
tb.print_exc()
# Errors because it violates our constraint that input 0, dim 1 == input 1, dim 1
try:
print(aten_dialect.module()(torch.ones(3, 3), torch.ones(3, 2)))
except Exception:
tb.print_exc()
tensor([[2., 2., 2.],
[2., 2., 2.],
[2., 2., 2.]])
tensor([[2., 2.],
[2., 2.],
[2., 2.]])
Traceback (most recent call last):
File "/pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py", line 154, in <module>
print(aten_dialect.module()(torch.ones(3, 15), torch.ones(3, 15)))
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 784, in call_wrapped
return self._wrapped_call(self, *args, **kwargs)
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 361, in __call__
raise e
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 348, in __call__
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1844, in _call_impl
return inner()
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1769, in inner
args_kwargs_result = hook(self, args, kwargs) # type: ignore[misc]
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 632, in _fn
return fn(*args, **kwargs)
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/export/_unlift.py", line 34, in _check_input_constraints_pre_hook
return _check_input_constraints_for_graph(
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/utils.py", line 326, in _check_input_constraints_for_graph
raise RuntimeError(
RuntimeError: Expected input at *args[0].shape[1] to be <= 10, but got 15
Traceback (most recent call last):
File "/pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py", line 160, in <module>
print(aten_dialect.module()(torch.ones(3, 3), torch.ones(3, 2)))
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 784, in call_wrapped
return self._wrapped_call(self, *args, **kwargs)
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 361, in __call__
raise e
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 348, in __call__
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1844, in _call_impl
return inner()
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1769, in inner
args_kwargs_result = hook(self, args, kwargs) # type: ignore[misc]
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 632, in _fn
return fn(*args, **kwargs)
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/export/_unlift.py", line 34, in _check_input_constraints_pre_hook
return _check_input_constraints_for_graph(
File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/utils.py", line 281, in _check_input_constraints_for_graph
raise RuntimeError(
RuntimeError: Expected input at *args[1].shape[1] to be equal to 3, but got 2
解决不可跟踪代码¶
由于我们的目标是从 PyTorch 程序中捕获整个计算图,因此我们最终可能会遇到程序中不可跟踪的部分。要解决这些问题,请参阅torch.export 文档或torch.export 教程。
执行量化¶
要量化模型,我们首先需要使用torch.export.export_for_training
捕获图形,执行量化,然后调用torch.export
。torch.export.export_for_training
返回一个包含 ATen 运算符的图形,这些运算符是 Autograd 安全的,这意味着它们对急切模式训练是安全的,这是量化所必需的。我们将此级别的图形称为Pre-Autograd ATen Dialect
图形。
与FX 图模式量化相比,我们需要调用两个新的 API:prepare_pt2e
和convert_pt2e
,而不是prepare_fx
和convert_fx
。不同之处在于prepare_pt2e
将后端特定的Quantizer
作为参数,它将使用适当的信息注释图形中的节点,以便为特定后端正确量化模型。
from torch.export import export_for_training
example_args = (torch.randn(1, 3, 256, 256),)
pre_autograd_aten_dialect = export_for_training(SimpleConv(), example_args).module()
print("Pre-Autograd ATen Dialect Graph")
print(pre_autograd_aten_dialect)
from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
get_symmetric_quantization_config,
XNNPACKQuantizer,
)
quantizer = XNNPACKQuantizer().set_global(get_symmetric_quantization_config())
prepared_graph = prepare_pt2e(pre_autograd_aten_dialect, quantizer)
# calibrate with a sample dataset
converted_graph = convert_pt2e(prepared_graph)
print("Quantized Graph")
print(converted_graph)
aten_dialect: ExportedProgram = export(converted_graph, example_args)
print("ATen Dialect Graph")
print(aten_dialect)
Pre-Autograd ATen Dialect Graph
GraphModule(
(conv): Module()
)
def forward(self, x):
x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec)
conv_weight = self.conv.weight
conv_bias = self.conv.bias
conv2d = torch.ops.aten.conv2d.default(x, conv_weight, conv_bias, [1, 1], [1, 1]); x = conv_weight = conv_bias = None
relu = torch.ops.aten.relu.default(conv2d); conv2d = None
return pytree.tree_unflatten((relu,), self._out_spec)
# To see more debug info, please use `graph_module.print_readable()`
/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/ao/quantization/utils.py:407: UserWarning: must run observer before calling calculate_qparams. Returning default values.
warnings.warn(
/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/ao/quantization/observer.py:1315: UserWarning: must run observer before calling calculate_qparams. Returning default scale and zero point
warnings.warn(
Quantized Graph
GraphModule(
(conv): Module()
)
def forward(self, x):
x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec)
_frozen_param0 = self._frozen_param0
dequantize_per_tensor_default = torch.ops.quantized_decomposed.dequantize_per_tensor.default(_frozen_param0, 1.0, 0, -127, 127, torch.int8); _frozen_param0 = None
conv_bias = self.conv.bias
quantize_per_tensor_default_1 = torch.ops.quantized_decomposed.quantize_per_tensor.default(x, 1.0, 0, -128, 127, torch.int8); x = None
dequantize_per_tensor_default_1 = torch.ops.quantized_decomposed.dequantize_per_tensor.default(quantize_per_tensor_default_1, 1.0, 0, -128, 127, torch.int8); quantize_per_tensor_default_1 = None
conv2d = torch.ops.aten.conv2d.default(dequantize_per_tensor_default_1, dequantize_per_tensor_default, conv_bias, [1, 1], [1, 1]); dequantize_per_tensor_default_1 = dequantize_per_tensor_default = conv_bias = None
relu = torch.ops.aten.relu.default(conv2d); conv2d = None
quantize_per_tensor_default_2 = torch.ops.quantized_decomposed.quantize_per_tensor.default(relu, 1.0, 0, -128, 127, torch.int8); relu = None
dequantize_per_tensor_default_2 = torch.ops.quantized_decomposed.dequantize_per_tensor.default(quantize_per_tensor_default_2, 1.0, 0, -128, 127, torch.int8); quantize_per_tensor_default_2 = None
return pytree.tree_unflatten((dequantize_per_tensor_default_2,), self._out_spec)
# To see more debug info, please use `graph_module.print_readable()`
ATen Dialect Graph
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_conv_bias: "f32[16]", b__frozen_param0: "i8[16, 3, 3, 3]", x: "f32[1, 3, 256, 256]"):
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:64 in forward, code: a = self.conv(x)
dequantize_per_tensor: "f32[16, 3, 3, 3]" = torch.ops.quantized_decomposed.dequantize_per_tensor.default(b__frozen_param0, 1.0, 0, -127, 127, torch.int8); b__frozen_param0 = None
# File: <eval_with_key>.185:9 in forward, code: quantize_per_tensor_default_1 = torch.ops.quantized_decomposed.quantize_per_tensor.default(x, 1.0, 0, -128, 127, torch.int8); x = None
quantize_per_tensor: "i8[1, 3, 256, 256]" = torch.ops.quantized_decomposed.quantize_per_tensor.default(x, 1.0, 0, -128, 127, torch.int8); x = None
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:64 in forward, code: a = self.conv(x)
dequantize_per_tensor_1: "f32[1, 3, 256, 256]" = torch.ops.quantized_decomposed.dequantize_per_tensor.default(quantize_per_tensor, 1.0, 0, -128, 127, torch.int8); quantize_per_tensor = None
conv2d: "f32[1, 16, 256, 256]" = torch.ops.aten.conv2d.default(dequantize_per_tensor_1, dequantize_per_tensor, p_conv_bias, [1, 1], [1, 1]); dequantize_per_tensor_1 = dequantize_per_tensor = p_conv_bias = None
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:65 in forward, code: return self.relu(a)
relu: "f32[1, 16, 256, 256]" = torch.ops.aten.relu.default(conv2d); conv2d = None
quantize_per_tensor_1: "i8[1, 16, 256, 256]" = torch.ops.quantized_decomposed.quantize_per_tensor.default(relu, 1.0, 0, -128, 127, torch.int8); relu = None
# File: <eval_with_key>.185:14 in forward, code: dequantize_per_tensor_default_2 = torch.ops.quantized_decomposed.dequantize_per_tensor.default(quantize_per_tensor_default_2, 1.0, 0, -128, 127, torch.int8); quantize_per_tensor_default_2 = None
dequantize_per_tensor_2: "f32[1, 16, 256, 256]" = torch.ops.quantized_decomposed.dequantize_per_tensor.default(quantize_per_tensor_1, 1.0, 0, -128, 127, torch.int8); quantize_per_tensor_1 = None
return (dequantize_per_tensor_2,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.PARAMETER: 2>, arg=TensorArgument(name='p_conv_bias'), target='conv.bias', persistent=None), InputSpec(kind=<InputKind.BUFFER: 3>, arg=TensorArgument(name='b__frozen_param0'), target='_frozen_param0', persistent=True), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='dequantize_per_tensor_2'), target=None)])
Range constraints: {}
有关如何量化模型以及后端如何实现Quantizer
的更多信息,请参见此处。
降低到 Edge Dialect¶
在将图导出并降低到ATen Dialect
之后,下一步是降低到Edge Dialect
,其中将应用对边缘设备有用但在通用(服务器)环境中不必要的专门化。其中一些专门化包括
数据类型专门化
标量到张量的转换
将所有操作转换为
executorch.exir.dialects.edge
命名空间。
请注意,此方言仍然与后端(或目标)无关。
降低是通过to_edge
API 完成的。
from executorch.exir import EdgeProgramManager, to_edge
example_args = (torch.randn(1, 3, 256, 256),)
aten_dialect: ExportedProgram = export(SimpleConv(), example_args)
edge_program: EdgeProgramManager = to_edge(aten_dialect)
print("Edge Dialect Graph")
print(edge_program.exported_program())
Edge Dialect Graph
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_conv_weight: "f32[16, 3, 3, 3]", p_conv_bias: "f32[16]", x: "f32[1, 3, 256, 256]"):
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:64 in forward, code: a = self.conv(x)
aten_convolution_default: "f32[1, 16, 256, 256]" = executorch_exir_dialects_edge__ops_aten_convolution_default(x, p_conv_weight, p_conv_bias, [1, 1], [1, 1], [1, 1], False, [0, 0], 1); x = p_conv_weight = p_conv_bias = None
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:65 in forward, code: return self.relu(a)
aten_relu_default: "f32[1, 16, 256, 256]" = executorch_exir_dialects_edge__ops_aten_relu_default(aten_convolution_default); aten_convolution_default = None
return (aten_relu_default,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.PARAMETER: 2>, arg=TensorArgument(name='p_conv_weight'), target='conv.weight', persistent=None), InputSpec(kind=<InputKind.PARAMETER: 2>, arg=TensorArgument(name='p_conv_bias'), target='conv.bias', persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='aten_relu_default'), target=None)])
Range constraints: {}
to_edge()
返回一个EdgeProgramManager
对象,其中包含将放置在此设备上的导出程序。此数据结构允许用户导出多个程序并将它们组合成一个二进制文件。如果只有一个程序,则默认情况下它将保存为名称“forward”。
class Encode(torch.nn.Module):
def forward(self, x):
return torch.nn.functional.linear(x, torch.randn(5, 10))
class Decode(torch.nn.Module):
def forward(self, x):
return torch.nn.functional.linear(x, torch.randn(10, 5))
encode_args = (torch.randn(1, 10),)
aten_encode: ExportedProgram = export(Encode(), encode_args)
decode_args = (torch.randn(1, 5),)
aten_decode: ExportedProgram = export(Decode(), decode_args)
edge_program: EdgeProgramManager = to_edge(
{"encode": aten_encode, "decode": aten_decode}
)
for method in edge_program.methods:
print(f"Edge Dialect graph of {method}")
print(edge_program.exported_program(method))
Edge Dialect graph of encode
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "f32[1, 10]"):
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:261 in forward, code: return torch.nn.functional.linear(x, torch.randn(5, 10))
aten_randn_default: "f32[5, 10]" = executorch_exir_dialects_edge__ops_aten_randn_default([5, 10], device = device(type='cpu'), pin_memory = False)
aten_permute_copy_default: "f32[10, 5]" = executorch_exir_dialects_edge__ops_aten_permute_copy_default(aten_randn_default, [1, 0]); aten_randn_default = None
aten_mm_default: "f32[1, 5]" = executorch_exir_dialects_edge__ops_aten_mm_default(x, aten_permute_copy_default); x = aten_permute_copy_default = None
return (aten_mm_default,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='aten_mm_default'), target=None)])
Range constraints: {}
Edge Dialect graph of decode
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "f32[1, 5]"):
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:266 in forward, code: return torch.nn.functional.linear(x, torch.randn(10, 5))
aten_randn_default: "f32[10, 5]" = executorch_exir_dialects_edge__ops_aten_randn_default([10, 5], device = device(type='cpu'), pin_memory = False)
aten_permute_copy_default: "f32[5, 10]" = executorch_exir_dialects_edge__ops_aten_permute_copy_default(aten_randn_default, [1, 0]); aten_randn_default = None
aten_mm_default: "f32[1, 10]" = executorch_exir_dialects_edge__ops_aten_mm_default(x, aten_permute_copy_default); x = aten_permute_copy_default = None
return (aten_mm_default,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='aten_mm_default'), target=None)])
Range constraints: {}
我们还可以通过transform
API 对导出程序运行其他 Pass。有关如何编写转换的深入文档,请参见此处。
请注意,由于图现在位于 Edge Dialect 中,因此所有 Pass 也必须生成有效的 Edge Dialect 图(特别需要指出的是,运算符现在位于executorch.exir.dialects.edge
命名空间中,而不是torch.ops.aten
命名空间中)。
example_args = (torch.randn(1, 3, 256, 256),)
aten_dialect: ExportedProgram = export(SimpleConv(), example_args)
edge_program: EdgeProgramManager = to_edge(aten_dialect)
print("Edge Dialect Graph")
print(edge_program.exported_program())
from executorch.exir.dialects._ops import ops as exir_ops
from executorch.exir.pass_base import ExportPass
class ConvertReluToSigmoid(ExportPass):
def call_operator(self, op, args, kwargs, meta):
if op == exir_ops.edge.aten.relu.default:
return super().call_operator(
exir_ops.edge.aten.sigmoid.default, args, kwargs, meta
)
else:
return super().call_operator(op, args, kwargs, meta)
transformed_edge_program = edge_program.transform((ConvertReluToSigmoid(),))
print("Transformed Edge Dialect Graph")
print(transformed_edge_program.exported_program())
Edge Dialect Graph
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_conv_weight: "f32[16, 3, 3, 3]", p_conv_bias: "f32[16]", x: "f32[1, 3, 256, 256]"):
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:64 in forward, code: a = self.conv(x)
aten_convolution_default: "f32[1, 16, 256, 256]" = executorch_exir_dialects_edge__ops_aten_convolution_default(x, p_conv_weight, p_conv_bias, [1, 1], [1, 1], [1, 1], False, [0, 0], 1); x = p_conv_weight = p_conv_bias = None
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:65 in forward, code: return self.relu(a)
aten_relu_default: "f32[1, 16, 256, 256]" = executorch_exir_dialects_edge__ops_aten_relu_default(aten_convolution_default); aten_convolution_default = None
return (aten_relu_default,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.PARAMETER: 2>, arg=TensorArgument(name='p_conv_weight'), target='conv.weight', persistent=None), InputSpec(kind=<InputKind.PARAMETER: 2>, arg=TensorArgument(name='p_conv_bias'), target='conv.bias', persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='aten_relu_default'), target=None)])
Range constraints: {}
Transformed Edge Dialect Graph
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_conv_weight: "f32[16, 3, 3, 3]", p_conv_bias: "f32[16]", x: "f32[1, 3, 256, 256]"):
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:64 in forward, code: a = self.conv(x)
aten_convolution_default: "f32[1, 16, 256, 256]" = executorch_exir_dialects_edge__ops_aten_convolution_default(x, p_conv_weight, p_conv_bias, [1, 1], [1, 1], [1, 1], False, [0, 0], 1); x = p_conv_weight = p_conv_bias = None
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:65 in forward, code: return self.relu(a)
aten_sigmoid_default: "f32[1, 16, 256, 256]" = executorch_exir_dialects_edge__ops_aten_sigmoid_default(aten_convolution_default); aten_convolution_default = None
return (aten_sigmoid_default,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.PARAMETER: 2>, arg=TensorArgument(name='p_conv_weight'), target='conv.weight', persistent=None), InputSpec(kind=<InputKind.PARAMETER: 2>, arg=TensorArgument(name='p_conv_bias'), target='conv.bias', persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='aten_sigmoid_default'), target=None)])
Range constraints: {}
注意:如果您看到类似torch._export.verifier.SpecViolationError: Operator torch._ops.aten._native_batch_norm_legit_functional.default is not Aten Canonical
的错误,请在https://github.com/pytorch/executorch/issues中提交问题,我们很乐意提供帮助!
委托给后端¶
我们现在可以通过to_backend
API 将图的一部分或整个图委托给第三方后端。有关后端委托的详细信息的深入文档,包括如何委托给后端以及如何实现后端,请参见此处。
使用此 API 有三种方法
我们可以降低整个模块。
我们可以获取降低的模块,并将其插入另一个更大的模块中。
我们可以将模块划分为可降低的子图,然后将这些子图降低到后端。
降低整个模块¶
要降低整个模块,我们可以将to_backend
传递后端名称、要降低的模块以及帮助后端降低过程的编译规范列表。
class LowerableModule(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.sin(x)
# Export and lower the module to Edge Dialect
example_args = (torch.ones(1),)
aten_dialect: ExportedProgram = export(LowerableModule(), example_args)
edge_program: EdgeProgramManager = to_edge(aten_dialect)
to_be_lowered_module = edge_program.exported_program()
from executorch.exir.backend.backend_api import LoweredBackendModule, to_backend
# Import the backend
from executorch.exir.backend.test.backend_with_compiler_demo import ( # noqa
BackendWithCompilerDemo,
)
# Lower the module
lowered_module: LoweredBackendModule = to_backend(
"BackendWithCompilerDemo", to_be_lowered_module, []
)
print(lowered_module)
print(lowered_module.backend_id)
print(lowered_module.processed_bytes)
print(lowered_module.original_module)
# Serialize and save it to a file
save_path = "delegate.pte"
with open(save_path, "wb") as f:
f.write(lowered_module.buffer())
LoweredBackendModule()
BackendWithCompilerDemo
b'1version:0#op:demo::aten.sin.default, numel:1, dtype:torch.float32<debug_handle>1#'
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "f32[1]"):
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:355 in forward, code: return torch.sin(x)
aten_sin_default: "f32[1]" = executorch_exir_dialects_edge__ops_aten_sin_default(x); x = None
return (aten_sin_default,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='aten_sin_default'), target=None)])
Range constraints: {}
在此调用中,to_backend
将返回一个LoweredBackendModule
。LoweredBackendModule
的一些重要属性是
backend_id
:此降低的模块将在运行时运行的后端名称processed_bytes
:一个二进制 Blob,它将告诉后端如何在运行时运行此程序original_module
:原始导出的模块
将降低的模块组合到另一个模块中¶
在我们要在多个程序中重用此降低的模块的情况下,我们可以将此降低的模块与另一个模块组合。
class NotLowerableModule(torch.nn.Module):
def __init__(self, bias):
super().__init__()
self.bias = bias
def forward(self, a, b):
return torch.add(torch.add(a, b), self.bias)
class ComposedModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.non_lowerable = NotLowerableModule(torch.ones(1) * 0.3)
self.lowerable = lowered_module
def forward(self, x):
a = self.lowerable(x)
b = self.lowerable(a)
ret = self.non_lowerable(a, b)
return a, b, ret
example_args = (torch.ones(1),)
aten_dialect: ExportedProgram = export(ComposedModule(), example_args)
edge_program: EdgeProgramManager = to_edge(aten_dialect)
exported_program = edge_program.exported_program()
print("Edge Dialect graph")
print(exported_program)
print("Lowered Module within the graph")
print(exported_program.graph_module.lowered_module_0.backend_id)
print(exported_program.graph_module.lowered_module_0.processed_bytes)
print(exported_program.graph_module.lowered_module_0.original_module)
Edge Dialect graph
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, c_non_lowerable_bias: "f32[1]", x: "f32[1]"):
# File: /opt/conda/envs/py_3.10/lib/python3.10/site-packages/executorch/exir/lowered_backend_module.py:343 in forward, code: return executorch_call_delegate(self, *args)
lowered_module_0 = self.lowered_module_0
executorch_call_delegate: "f32[1]" = torch.ops.higher_order.executorch_call_delegate(lowered_module_0, x); lowered_module_0 = x = None
# File: /opt/conda/envs/py_3.10/lib/python3.10/site-packages/executorch/exir/lowered_backend_module.py:343 in forward, code: return executorch_call_delegate(self, *args)
lowered_module_1 = self.lowered_module_0
executorch_call_delegate_1: "f32[1]" = torch.ops.higher_order.executorch_call_delegate(lowered_module_1, executorch_call_delegate); lowered_module_1 = None
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:409 in forward, code: return torch.add(torch.add(a, b), self.bias)
aten_add_tensor: "f32[1]" = executorch_exir_dialects_edge__ops_aten_add_Tensor(executorch_call_delegate, executorch_call_delegate_1)
aten_add_tensor_1: "f32[1]" = executorch_exir_dialects_edge__ops_aten_add_Tensor(aten_add_tensor, c_non_lowerable_bias); aten_add_tensor = c_non_lowerable_bias = None
return (executorch_call_delegate, executorch_call_delegate_1, aten_add_tensor_1)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.CONSTANT_TENSOR: 4>, arg=TensorArgument(name='c_non_lowerable_bias'), target='non_lowerable.bias', persistent=True), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='executorch_call_delegate'), target=None), OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='executorch_call_delegate_1'), target=None), OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='aten_add_tensor_1'), target=None)])
Range constraints: {}
Lowered Module within the graph
BackendWithCompilerDemo
b'1version:0#op:demo::aten.sin.default, numel:1, dtype:torch.float32<debug_handle>1#'
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "f32[1]"):
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:355 in forward, code: return torch.sin(x)
aten_sin_default: "f32[1]" = executorch_exir_dialects_edge__ops_aten_sin_default(x); x = None
return (aten_sin_default,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='aten_sin_default'), target=None)])
Range constraints: {}
请注意,图中现在有一个torch.ops.higher_order.executorch_call_delegate
节点,它正在调用lowered_module_0
。此外,lowered_module_0
的内容与我们之前创建的lowered_module
相同。
划分和降低模块的部分¶
另一个降低流程是将to_backend
传递我们要降低的模块以及特定于后端的划分器。to_backend
将使用特定于后端的划分器标记模块中可降低的节点,将这些节点划分为子图,然后为每个子图创建一个LoweredBackendModule
。
class Foo(torch.nn.Module):
def forward(self, a, x, b):
y = torch.mm(a, x)
z = y + b
a = z - a
y = torch.mm(a, x)
z = y + b
return z
example_args = (torch.randn(2, 2), torch.randn(2, 2), torch.randn(2, 2))
aten_dialect: ExportedProgram = export(Foo(), example_args)
edge_program: EdgeProgramManager = to_edge(aten_dialect)
exported_program = edge_program.exported_program()
print("Edge Dialect graph")
print(exported_program)
from executorch.exir.backend.test.op_partitioner_demo import AddMulPartitionerDemo
delegated_program = to_backend(exported_program, AddMulPartitionerDemo())
print("Delegated program")
print(delegated_program)
print(delegated_program.graph_module.lowered_module_0.original_module)
print(delegated_program.graph_module.lowered_module_1.original_module)
Edge Dialect graph
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, a: "f32[2, 2]", x: "f32[2, 2]", b: "f32[2, 2]"):
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:455 in forward, code: y = torch.mm(a, x)
aten_mm_default: "f32[2, 2]" = executorch_exir_dialects_edge__ops_aten_mm_default(a, x)
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:456 in forward, code: z = y + b
aten_add_tensor: "f32[2, 2]" = executorch_exir_dialects_edge__ops_aten_add_Tensor(aten_mm_default, b); aten_mm_default = None
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:457 in forward, code: a = z - a
aten_sub_tensor: "f32[2, 2]" = executorch_exir_dialects_edge__ops_aten_sub_Tensor(aten_add_tensor, a); aten_add_tensor = a = None
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:458 in forward, code: y = torch.mm(a, x)
aten_mm_default_1: "f32[2, 2]" = executorch_exir_dialects_edge__ops_aten_mm_default(aten_sub_tensor, x); aten_sub_tensor = x = None
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:459 in forward, code: z = y + b
aten_add_tensor_1: "f32[2, 2]" = executorch_exir_dialects_edge__ops_aten_add_Tensor(aten_mm_default_1, b); aten_mm_default_1 = b = None
return (aten_add_tensor_1,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='a'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='b'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='aten_add_tensor_1'), target=None)])
Range constraints: {}
Delegated program
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, a: "f32[2, 2]", x: "f32[2, 2]", b: "f32[2, 2]"):
# No stacktrace found for following nodes
lowered_module_0 = self.lowered_module_0
lowered_module_1 = self.lowered_module_1
executorch_call_delegate_1 = torch.ops.higher_order.executorch_call_delegate(lowered_module_1, a, x, b); lowered_module_1 = None
getitem_1: "f32[2, 2]" = executorch_call_delegate_1[0]; executorch_call_delegate_1 = None
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:457 in forward, code: a = z - a
aten_sub_tensor: "f32[2, 2]" = executorch_exir_dialects_edge__ops_aten_sub_Tensor(getitem_1, a); getitem_1 = a = None
# No stacktrace found for following nodes
executorch_call_delegate = torch.ops.higher_order.executorch_call_delegate(lowered_module_0, aten_sub_tensor, x, b); lowered_module_0 = aten_sub_tensor = x = b = None
getitem: "f32[2, 2]" = executorch_call_delegate[0]; executorch_call_delegate = None
return (getitem,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='a'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='b'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)])
Range constraints: {}
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, aten_sub_tensor: "f32[2, 2]", x: "f32[2, 2]", b: "f32[2, 2]"):
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:458 in forward, code: y = torch.mm(a, x)
aten_mm_default_1: "f32[2, 2]" = executorch_exir_dialects_edge__ops_aten_mm_default(aten_sub_tensor, x); aten_sub_tensor = x = None
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:459 in forward, code: z = y + b
aten_add_tensor_1: "f32[2, 2]" = executorch_exir_dialects_edge__ops_aten_add_Tensor(aten_mm_default_1, b); aten_mm_default_1 = b = None
return [aten_add_tensor_1]
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='aten_sub_tensor'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='b'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='aten_add_tensor_1'), target=None)])
Range constraints: {}
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, a: "f32[2, 2]", x: "f32[2, 2]", b: "f32[2, 2]"):
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:455 in forward, code: y = torch.mm(a, x)
aten_mm_default: "f32[2, 2]" = executorch_exir_dialects_edge__ops_aten_mm_default(a, x); a = x = None
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:456 in forward, code: z = y + b
aten_add_tensor: "f32[2, 2]" = executorch_exir_dialects_edge__ops_aten_add_Tensor(aten_mm_default, b); aten_mm_default = b = None
return [aten_add_tensor]
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='a'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='b'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='aten_add_tensor'), target=None)])
Range constraints: {}
请注意,图中现在有两个torch.ops.higher_order.executorch_call_delegate
节点,一个包含操作add, mul,另一个包含操作mul, add。
或者,降低模块部分的更具凝聚力的 API 是直接在其上调用to_backend
class Foo(torch.nn.Module):
def forward(self, a, x, b):
y = torch.mm(a, x)
z = y + b
a = z - a
y = torch.mm(a, x)
z = y + b
return z
example_args = (torch.randn(2, 2), torch.randn(2, 2), torch.randn(2, 2))
aten_dialect: ExportedProgram = export(Foo(), example_args)
edge_program: EdgeProgramManager = to_edge(aten_dialect)
exported_program = edge_program.exported_program()
delegated_program = edge_program.to_backend(AddMulPartitionerDemo())
print("Delegated program")
print(delegated_program.exported_program())
Delegated program
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, a: "f32[2, 2]", x: "f32[2, 2]", b: "f32[2, 2]"):
# No stacktrace found for following nodes
lowered_module_0 = self.lowered_module_0
lowered_module_1 = self.lowered_module_1
executorch_call_delegate_1 = torch.ops.higher_order.executorch_call_delegate(lowered_module_1, a, x, b); lowered_module_1 = None
getitem_1: "f32[2, 2]" = executorch_call_delegate_1[0]; executorch_call_delegate_1 = None
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:491 in forward, code: a = z - a
aten_sub_tensor: "f32[2, 2]" = executorch_exir_dialects_edge__ops_aten_sub_Tensor(getitem_1, a); getitem_1 = a = None
# No stacktrace found for following nodes
executorch_call_delegate = torch.ops.higher_order.executorch_call_delegate(lowered_module_0, aten_sub_tensor, x, b); lowered_module_0 = aten_sub_tensor = x = b = None
getitem: "f32[2, 2]" = executorch_call_delegate[0]; executorch_call_delegate = None
return (getitem,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='a'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='b'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)])
Range constraints: {}
运行用户定义的 Pass 和内存规划¶
作为降低的最后一步,我们可以使用to_executorch()
API 传递特定于后端的 Pass,例如用自定义后端运算符替换运算符集,以及内存规划 Pass,以在运行程序时提前告诉运行时如何分配内存。
提供了一个默认的内存规划 Pass,但如果存在,我们也可以选择特定于后端的内存规划 Pass。有关编写自定义内存规划 Pass 的更多信息,请参见此处
from executorch.exir import ExecutorchBackendConfig, ExecutorchProgramManager
from executorch.exir.passes import MemoryPlanningPass
executorch_program: ExecutorchProgramManager = edge_program.to_executorch(
ExecutorchBackendConfig(
passes=[], # User-defined passes
memory_planning_pass=MemoryPlanningPass(), # Default memory planning pass
)
)
print("ExecuTorch Dialect")
print(executorch_program.exported_program())
import executorch.exir as exir
ExecuTorch Dialect
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, a: "f32[2, 2]", x: "f32[2, 2]", b: "f32[2, 2]"):
# No stacktrace found for following nodes
alloc: "f32[2, 2]" = executorch_exir_memory_alloc(((2, 2), torch.float32))
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:489 in forward, code: y = torch.mm(a, x)
aten_mm_default: "f32[2, 2]" = torch.ops.aten.mm.out(a, x, out = alloc); alloc = None
# No stacktrace found for following nodes
alloc_1: "f32[2, 2]" = executorch_exir_memory_alloc(((2, 2), torch.float32))
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:490 in forward, code: z = y + b
aten_add_tensor: "f32[2, 2]" = torch.ops.aten.add.out(aten_mm_default, b, out = alloc_1); aten_mm_default = alloc_1 = None
# No stacktrace found for following nodes
alloc_2: "f32[2, 2]" = executorch_exir_memory_alloc(((2, 2), torch.float32))
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:491 in forward, code: a = z - a
aten_sub_tensor: "f32[2, 2]" = torch.ops.aten.sub.out(aten_add_tensor, a, out = alloc_2); aten_add_tensor = a = alloc_2 = None
# No stacktrace found for following nodes
alloc_3: "f32[2, 2]" = executorch_exir_memory_alloc(((2, 2), torch.float32))
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:492 in forward, code: y = torch.mm(a, x)
aten_mm_default_1: "f32[2, 2]" = torch.ops.aten.mm.out(aten_sub_tensor, x, out = alloc_3); aten_sub_tensor = x = alloc_3 = None
# No stacktrace found for following nodes
alloc_4: "f32[2, 2]" = executorch_exir_memory_alloc(((2, 2), torch.float32))
# File: /pytorch/executorch/docs/source/tutorials_source/export-to-executorch-tutorial.py:493 in forward, code: z = y + b
aten_add_tensor_1: "f32[2, 2]" = torch.ops.aten.add.out(aten_mm_default_1, b, out = alloc_4); aten_mm_default_1 = b = alloc_4 = None
return (aten_add_tensor_1,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='a'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='b'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='aten_add_tensor_1'), target=None)])
Range constraints: {}
请注意,在图中,我们现在看到了像torch.ops.aten.sub.out
和torch.ops.aten.div.out
这样的运算符,而不是torch.ops.aten.sub.Tensor
和torch.ops.aten.div.Tensor
。
这是因为在运行后端 Pass 和内存规划 Pass 之间,为了准备内存规划的图,会在图上运行一个 out-variant Pass,以将所有运算符转换为其 out 变体。运算符的out
变体不会在内核实现中分配返回的张量,而是会将其 out kwarg 中预分配的张量作为输入,并将结果存储在那里,从而使内存规划器更容易进行张量生命周期分析。
我们还在图中插入alloc
节点,其中包含对特殊executorch.exir.memory.alloc
运算符的调用。这告诉我们分配 out-variant 运算符输出的每个张量需要多少内存。
保存到文件¶
最后,我们可以将 ExecuTorch 程序保存到文件中,并将其加载到设备上以运行。
这是一个完整的端到端工作流程示例
import torch
from torch.export import export, export_for_training, ExportedProgram
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.param = torch.nn.Parameter(torch.rand(3, 4))
self.linear = torch.nn.Linear(4, 5)
def forward(self, x):
return self.linear(x + self.param).clamp(min=0.0, max=1.0)
example_args = (torch.randn(3, 4),)
pre_autograd_aten_dialect = export_for_training(M(), example_args).module()
# Optionally do quantization:
# pre_autograd_aten_dialect = convert_pt2e(prepare_pt2e(pre_autograd_aten_dialect, CustomBackendQuantizer))
aten_dialect: ExportedProgram = export(pre_autograd_aten_dialect, example_args)
edge_program: exir.EdgeProgramManager = exir.to_edge(aten_dialect)
# Optionally do delegation:
# edge_program = edge_program.to_backend(CustomBackendPartitioner)
executorch_program: exir.ExecutorchProgramManager = edge_program.to_executorch(
ExecutorchBackendConfig(
passes=[], # User-defined passes
)
)
with open("model.pte", "wb") as file:
file.write(executorch_program.buffer)