快捷方式

学习基础知识 || 快速入门 || 张量 || 数据集与数据加载器 || 变换 || 构建模型 || Autograd || 优化 || 保存和加载模型

优化模型参数

创建日期:2021 年 2 月 9 日 | 最后更新:2024 年 1 月 31 日 | 最后验证:2024 年 11 月 5 日

现在我们已经有了模型和数据,是时候通过优化模型的参数来训练、验证和测试模型了。训练模型是一个迭代过程;在每次迭代中,模型都会对输出进行预测,计算预测的误差(损失),收集误差相对于模型参数的导数(正如我们在上一节中看到的那样),并使用梯度下降来优化这些参数。要更详细地了解这个过程,可以看看 3Blue1Brown 关于反向传播的视频。

前提代码

我们加载前面关于数据集与数据加载器构建模型的代码。

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

model = NeuralNetwork()
  0%|          | 0.00/26.4M [00:00<?, ?B/s]
  0%|          | 65.5k/26.4M [00:00<01:12, 364kB/s]
  1%|          | 229k/26.4M [00:00<00:38, 682kB/s]
  4%|3         | 950k/26.4M [00:00<00:11, 2.18MB/s]
 15%|#4        | 3.83M/26.4M [00:00<00:02, 7.58MB/s]
 37%|###7      | 9.86M/26.4M [00:00<00:00, 16.8MB/s]
 60%|######    | 16.0M/26.4M [00:01<00:00, 22.5MB/s]
 83%|########3 | 22.0M/26.4M [00:01<00:00, 26.1MB/s]
100%|##########| 26.4M/26.4M [00:01<00:00, 19.3MB/s]

  0%|          | 0.00/29.5k [00:00<?, ?B/s]
100%|##########| 29.5k/29.5k [00:00<00:00, 326kB/s]

  0%|          | 0.00/4.42M [00:00<?, ?B/s]
  1%|1         | 65.5k/4.42M [00:00<00:12, 357kB/s]
  4%|4         | 197k/4.42M [00:00<00:05, 757kB/s]
 11%|#1        | 492k/4.42M [00:00<00:03, 1.26MB/s]
 37%|###7      | 1.64M/4.42M [00:00<00:00, 4.25MB/s]
 87%|########6 | 3.83M/4.42M [00:00<00:00, 7.89MB/s]
100%|##########| 4.42M/4.42M [00:00<00:00, 6.01MB/s]

  0%|          | 0.00/5.15k [00:00<?, ?B/s]
100%|##########| 5.15k/5.15k [00:00<00:00, 50.9MB/s]

超参数

超参数是可调节的参数,允许你控制模型的优化过程。不同的超参数值会影响模型的训练速度和收敛率(有关超参数调优的更多信息)。

我们为训练定义以下超参数
  • 训练轮数 (Epochs) - 遍历数据集的次数

  • 批量大小 (Batch Size) - 在更新参数之前通过网络传播的数据样本数量

  • 学习率 (Learning Rate) - 在每个批量/训练轮中更新模型参数的幅度。较小的值会产生较慢的学习速度,而较大的值可能导致训练期间出现不可预测的行为。

learning_rate = 1e-3
batch_size = 64
epochs = 5

优化循环

设置好超参数后,我们就可以通过优化循环来训练和优化模型。优化循环的每次迭代称为一个训练轮 (epoch)

每个训练轮包含两个主要部分
  • 训练循环 - 遍历训练数据集并尝试收敛到最优参数。

  • 验证/测试循环 - 遍历测试数据集,检查模型性能是否正在提高。

让我们简要熟悉一下训练循环中使用的一些概念。跳到后面查看优化循环的完整实现

损失函数

当给定一些训练数据时,我们未经训练的网络很可能无法给出正确答案。损失函数衡量得到的结果与目标值之间的差异程度,我们希望在训练过程中最小化损失函数。为了计算损失,我们使用给定数据样本的输入进行预测,并将其与真实数据标签值进行比较。

常见的损失函数包括用于回归任务的nn.MSELoss(均方误差)和用于分类任务的nn.NLLLoss(负对数似然)。nn.CrossEntropyLoss 结合了 nn.LogSoftmaxnn.NLLLoss

我们将模型的输出 logits 传递给 nn.CrossEntropyLoss,它将对 logits 进行归一化并计算预测误差。

# Initialize the loss function
loss_fn = nn.CrossEntropyLoss()

优化器

优化是调整模型参数以在每个训练步骤中减少模型误差的过程。优化算法定义了如何执行此过程(在此示例中,我们使用随机梯度下降)。所有优化逻辑都封装在 optimizer 对象中。在这里,我们使用 SGD 优化器;此外,PyTorch 中还有许多不同的优化器可用,例如 ADAM 和 RMSProp,它们适用于不同类型的模型和数据。

我们通过注册需要训练的模型参数并传入学习率超参数来初始化优化器。

在训练循环中,优化过程分为三个步骤
  • 调用 optimizer.zero_grad() 来重置模型参数的梯度。梯度默认会累积;为了防止重复计算,我们在每次迭代时显式地将它们归零。

  • 调用 loss.backward() 进行预测损失的反向传播。PyTorch 会计算损失相对于每个参数的梯度。

  • 得到梯度后,我们调用 optimizer.step() 根据反向传播中收集到的梯度来调整参数。

完整实现

我们定义了循环执行优化代码的 train_loop 和根据测试数据评估模型性能的 test_loop

def train_loop(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    # Set the model to training mode - important for batch normalization and dropout layers
    # Unnecessary in this situation but added for best practices
    model.train()
    for batch, (X, y) in enumerate(dataloader):
        # Compute prediction and loss
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * batch_size + len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")


def test_loop(dataloader, model, loss_fn):
    # Set the model to evaluation mode - important for batch normalization and dropout layers
    # Unnecessary in this situation but added for best practices
    model.eval()
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    test_loss, correct = 0, 0

    # Evaluating the model with torch.no_grad() ensures that no gradients are computed during test mode
    # also serves to reduce unnecessary gradient computations and memory usage for tensors with requires_grad=True
    with torch.no_grad():
        for X, y in dataloader:
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()

    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

我们初始化损失函数和优化器,并将其传递给 train_looptest_loop。你可以随意增加训练轮数来跟踪模型性能的提升。

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

epochs = 10
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(train_dataloader, model, loss_fn, optimizer)
    test_loop(test_dataloader, model, loss_fn)
print("Done!")
Epoch 1
-------------------------------
loss: 2.298730  [   64/60000]
loss: 2.289123  [ 6464/60000]
loss: 2.273286  [12864/60000]
loss: 2.269406  [19264/60000]
loss: 2.249604  [25664/60000]
loss: 2.229407  [32064/60000]
loss: 2.227369  [38464/60000]
loss: 2.204261  [44864/60000]
loss: 2.206193  [51264/60000]
loss: 2.166651  [57664/60000]
Test Error:
 Accuracy: 50.9%, Avg loss: 2.166725

Epoch 2
-------------------------------
loss: 2.176751  [   64/60000]
loss: 2.169596  [ 6464/60000]
loss: 2.117501  [12864/60000]
loss: 2.129273  [19264/60000]
loss: 2.079675  [25664/60000]
loss: 2.032928  [32064/60000]
loss: 2.050115  [38464/60000]
loss: 1.985237  [44864/60000]
loss: 1.987888  [51264/60000]
loss: 1.907163  [57664/60000]
Test Error:
 Accuracy: 55.9%, Avg loss: 1.915487

Epoch 3
-------------------------------
loss: 1.951615  [   64/60000]
loss: 1.928684  [ 6464/60000]
loss: 1.815711  [12864/60000]
loss: 1.841554  [19264/60000]
loss: 1.732469  [25664/60000]
loss: 1.692915  [32064/60000]
loss: 1.701716  [38464/60000]
loss: 1.610631  [44864/60000]
loss: 1.632872  [51264/60000]
loss: 1.514267  [57664/60000]
Test Error:
 Accuracy: 58.8%, Avg loss: 1.541527

Epoch 4
-------------------------------
loss: 1.616449  [   64/60000]
loss: 1.582892  [ 6464/60000]
loss: 1.427596  [12864/60000]
loss: 1.487955  [19264/60000]
loss: 1.359329  [25664/60000]
loss: 1.364820  [32064/60000]
loss: 1.371491  [38464/60000]
loss: 1.298707  [44864/60000]
loss: 1.336200  [51264/60000]
loss: 1.232144  [57664/60000]
Test Error:
 Accuracy: 62.2%, Avg loss: 1.260238

Epoch 5
-------------------------------
loss: 1.345540  [   64/60000]
loss: 1.327799  [ 6464/60000]
loss: 1.153804  [12864/60000]
loss: 1.254832  [19264/60000]
loss: 1.117318  [25664/60000]
loss: 1.153250  [32064/60000]
loss: 1.171764  [38464/60000]
loss: 1.110264  [44864/60000]
loss: 1.154467  [51264/60000]
loss: 1.070921  [57664/60000]
Test Error:
 Accuracy: 64.1%, Avg loss: 1.089831

Epoch 6
-------------------------------
loss: 1.166888  [   64/60000]
loss: 1.170515  [ 6464/60000]
loss: 0.979435  [12864/60000]
loss: 1.113774  [19264/60000]
loss: 0.973409  [25664/60000]
loss: 1.015192  [32064/60000]
loss: 1.051111  [38464/60000]
loss: 0.993591  [44864/60000]
loss: 1.039709  [51264/60000]
loss: 0.971078  [57664/60000]
Test Error:
 Accuracy: 65.8%, Avg loss: 0.982441

Epoch 7
-------------------------------
loss: 1.045163  [   64/60000]
loss: 1.070585  [ 6464/60000]
loss: 0.862304  [12864/60000]
loss: 1.022268  [19264/60000]
loss: 0.885212  [25664/60000]
loss: 0.919530  [32064/60000]
loss: 0.972762  [38464/60000]
loss: 0.918727  [44864/60000]
loss: 0.961630  [51264/60000]
loss: 0.904378  [57664/60000]
Test Error:
 Accuracy: 66.9%, Avg loss: 0.910168

Epoch 8
-------------------------------
loss: 0.956964  [   64/60000]
loss: 1.002171  [ 6464/60000]
loss: 0.779055  [12864/60000]
loss: 0.958410  [19264/60000]
loss: 0.827243  [25664/60000]
loss: 0.850261  [32064/60000]
loss: 0.917320  [38464/60000]
loss: 0.868385  [44864/60000]
loss: 0.905506  [51264/60000]
loss: 0.856354  [57664/60000]
Test Error:
 Accuracy: 68.3%, Avg loss: 0.858248

Epoch 9
-------------------------------
loss: 0.889762  [   64/60000]
loss: 0.951220  [ 6464/60000]
loss: 0.717033  [12864/60000]
loss: 0.911042  [19264/60000]
loss: 0.786091  [25664/60000]
loss: 0.798369  [32064/60000]
loss: 0.874938  [38464/60000]
loss: 0.832791  [44864/60000]
loss: 0.863253  [51264/60000]
loss: 0.819740  [57664/60000]
Test Error:
 Accuracy: 69.5%, Avg loss: 0.818778

Epoch 10
-------------------------------
loss: 0.836395  [   64/60000]
loss: 0.910217  [ 6464/60000]
loss: 0.668505  [12864/60000]
loss: 0.874332  [19264/60000]
loss: 0.754807  [25664/60000]
loss: 0.758451  [32064/60000]
loss: 0.840449  [38464/60000]
loss: 0.806151  [44864/60000]
loss: 0.830361  [51264/60000]
loss: 0.790275  [57664/60000]
Test Error:
 Accuracy: 71.0%, Avg loss: 0.787269

Done!

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取面向初学者和高级开发者的深度教程

查看教程

资源

查找开发资源并获得问题解答

查看资源