注意
点击此处下载完整示例代码
前向模式自动微分 (Beta)¶
创建于: 2021年12月07日 | 最后更新于: 2023年04月18日 | 最后验证于: 2024年11月05日
本教程演示如何使用前向模式 AD 计算方向导数(或等效地,雅可比-向量积)。
以下教程中使用的一些 API 仅在 >= 1.11 版本(或 nightly 构建)中可用。
另请注意,前向模式 AD 目前处于 Beta 阶段。API 可能会更改,并且算子覆盖范围仍不完整。
基本用法¶
与反向模式 AD 不同,前向模式 AD 在前向传播的同时急切地计算梯度。我们可以使用前向模式 AD 计算方向导数,方法是像之前一样执行前向传播,只是我们首先将输入与另一个张量关联起来,该张量表示方向导数的方向(或等效地,雅可比-向量积中的 v
)。当一个输入(我们称之为“原始值”)与一个“方向”张量(我们称之为“切线值”)关联时,所得的新张量对象因其与对偶数 [0] 的联系而被称为“对偶张量”。
执行前向传播时,如果任何输入张量是对偶张量,则会执行额外的计算以传播函数的这种“敏感性”。
import torch
import torch.autograd.forward_ad as fwAD
primal = torch.randn(10, 10)
tangent = torch.randn(10, 10)
def fn(x, y):
return x ** 2 + y ** 2
# All forward AD computation must be performed in the context of
# a ``dual_level`` context. All dual tensors created in such a context
# will have their tangents destroyed upon exit. This is to ensure that
# if the output or intermediate results of this computation are reused
# in a future forward AD computation, their tangents (which are associated
# with this computation) won't be confused with tangents from the later
# computation.
with fwAD.dual_level():
# To create a dual tensor we associate a tensor, which we call the
# primal with another tensor of the same size, which we call the tangent.
# If the layout of the tangent is different from that of the primal,
# The values of the tangent are copied into a new tensor with the same
# metadata as the primal. Otherwise, the tangent itself is used as-is.
#
# It is also important to note that the dual tensor created by
# ``make_dual`` is a view of the primal.
dual_input = fwAD.make_dual(primal, tangent)
assert fwAD.unpack_dual(dual_input).tangent is tangent
# To demonstrate the case where the copy of the tangent happens,
# we pass in a tangent with a layout different from that of the primal
dual_input_alt = fwAD.make_dual(primal, tangent.T)
assert fwAD.unpack_dual(dual_input_alt).tangent is not tangent
# Tensors that do not have an associated tangent are automatically
# considered to have a zero-filled tangent of the same shape.
plain_tensor = torch.randn(10, 10)
dual_output = fn(dual_input, plain_tensor)
# Unpacking the dual returns a ``namedtuple`` with ``primal`` and ``tangent``
# as attributes
jvp = fwAD.unpack_dual(dual_output).tangent
assert fwAD.unpack_dual(dual_output).tangent is None
与模块一起使用¶
要将 nn.Module
与前向 AD 一起使用,请在执行前向传播之前用对偶张量替换模型的参数。在撰写本文时,无法创建对偶张量 `nn.Parameter`。作为一种变通方法,必须将对偶张量注册为模块的非参数属性。
import torch.nn as nn
model = nn.Linear(5, 5)
input = torch.randn(16, 5)
params = {name: p for name, p in model.named_parameters()}
tangents = {name: torch.rand_like(p) for name, p in params.items()}
with fwAD.dual_level():
for name, p in params.items():
delattr(model, name)
setattr(model, name, fwAD.make_dual(p, tangents[name]))
out = model(input)
jvp = fwAD.unpack_dual(out).tangent
使用函数式模块 API (Beta)¶
另一种将 nn.Module
与前向 AD 一起使用的方法是利用函数式模块 API(也称为无状态模块 API)。
from torch.func import functional_call
# We need a fresh module because the functional call requires the
# the model to have parameters registered.
model = nn.Linear(5, 5)
dual_params = {}
with fwAD.dual_level():
for name, p in params.items():
# Using the same ``tangents`` from the above section
dual_params[name] = fwAD.make_dual(p, tangents[name])
out = functional_call(model, dual_params, input)
jvp2 = fwAD.unpack_dual(out).tangent
# Check our results
assert torch.allclose(jvp, jvp2)
自定义 autograd 函数¶
自定义函数也支持前向模式 AD。要创建支持前向模式 AD 的自定义函数,请注册 jvp()
静态方法。自定义函数可以(但非强制)同时支持前向和反向 AD。有关更多信息,请参阅文档。
class Fn(torch.autograd.Function):
@staticmethod
def forward(ctx, foo):
result = torch.exp(foo)
# Tensors stored in ``ctx`` can be used in the subsequent forward grad
# computation.
ctx.result = result
return result
@staticmethod
def jvp(ctx, gI):
gO = gI * ctx.result
# If the tensor stored in`` ctx`` will not also be used in the backward pass,
# one can manually free it using ``del``
del ctx.result
return gO
fn = Fn.apply
primal = torch.randn(10, 10, dtype=torch.double, requires_grad=True)
tangent = torch.randn(10, 10)
with fwAD.dual_level():
dual_input = fwAD.make_dual(primal, tangent)
dual_output = fn(dual_input)
jvp = fwAD.unpack_dual(dual_output).tangent
# It is important to use ``autograd.gradcheck`` to verify that your
# custom autograd Function computes the gradients correctly. By default,
# ``gradcheck`` only checks the backward-mode (reverse-mode) AD gradients. Specify
# ``check_forward_ad=True`` to also check forward grads. If you did not
# implement the backward formula for your function, you can also tell ``gradcheck``
# to skip the tests that require backward-mode AD by specifying
# ``check_backward_ad=False``, ``check_undefined_grad=False``, and
# ``check_batched_grad=False``.
torch.autograd.gradcheck(Fn.apply, (primal,), check_forward_ad=True,
check_backward_ad=False, check_undefined_grad=False,
check_batched_grad=False)
True
函数式 API (Beta)¶
我们还在 functorch 中提供了一个更高级的函数式 API,用于计算雅可比-向量积,根据你的用例,你可能会发现它更易于使用。
函数式 API 的优点在于无需理解或使用底层对偶张量 API,并且可以将其与其他functorch 转换(如 vmap)组合;缺点是它提供的控制较少。
请注意,本教程的其余部分需要 functorch (https://github.com/pytorch/functorch) 才能运行。请在指定的链接处查找安装说明。
import functorch as ft
primal0 = torch.randn(10, 10)
tangent0 = torch.randn(10, 10)
primal1 = torch.randn(10, 10)
tangent1 = torch.randn(10, 10)
def fn(x, y):
return x ** 2 + y ** 2
# Here is a basic example to compute the JVP of the above function.
# The ``jvp(func, primals, tangents)`` returns ``func(*primals)`` as well as the
# computed Jacobian-vector product (JVP). Each primal must be associated with a tangent of the same shape.
primal_out, tangent_out = ft.jvp(fn, (primal0, primal1), (tangent0, tangent1))
# ``functorch.jvp`` requires every primal to be associated with a tangent.
# If we only want to associate certain inputs to `fn` with tangents,
# then we'll need to create a new function that captures inputs without tangents:
primal = torch.randn(10, 10)
tangent = torch.randn(10, 10)
y = torch.randn(10, 10)
import functools
new_fn = functools.partial(fn, y=y)
primal_out, tangent_out = ft.jvp(new_fn, (primal,), (tangent,))
将函数式 API 与模块一起使用¶
要将 nn.Module
与 functorch.jvp
一起使用来计算相对于模型参数的雅可比-向量积,我们需要将 nn.Module
重构为一个接受模型参数和模块输入的函数。
model = nn.Linear(5, 5)
input = torch.randn(16, 5)
tangents = tuple([torch.rand_like(p) for p in model.parameters()])
# Given a ``torch.nn.Module``, ``ft.make_functional_with_buffers`` extracts the state
# (``params`` and buffers) and returns a functional version of the model that
# can be invoked like a function.
# That is, the returned ``func`` can be invoked like
# ``func(params, buffers, input)``.
# ``ft.make_functional_with_buffers`` is analogous to the ``nn.Modules`` stateless API
# that you saw previously and we're working on consolidating the two.
func, params, buffers = ft.make_functional_with_buffers(model)
# Because ``jvp`` requires every input to be associated with a tangent, we need to
# create a new function that, when given the parameters, produces the output
def func_params_only(params):
return func(params, buffers, input)
model_output, jvp_out = ft.jvp(func_params_only, (params,), (tangents,))
[0] https://en.wikipedia.org/wiki/Dual_number
脚本总运行时间: ( 0 分钟 0.109 秒)