快捷方式

学习基础知识 || 快速入门 || 张量 || 数据集与数据加载器 || 转换 || 构建模型 || Autograd || 优化 || 保存与加载模型

快速入门

创建日期:2021 年 2 月 9 日 | 最后更新:2025 年 1 月 24 日 | 最后验证:未验证

本节将快速介绍机器学习中常见任务的 API。参考各部分中的链接以深入了解。

使用数据

PyTorch 有两个用于处理数据的基本模块torch.utils.data.DataLoadertorch.utils.data.DatasetDataset 存储样本及其对应的标签,而 DataLoader 则将一个可迭代对象封装在 Dataset 周围。

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

PyTorch 提供特定领域的库,例如 TorchTextTorchVisionTorchAudio,所有这些库都包含数据集。在本教程中,我们将使用 TorchVision 数据集。

torchvision.datasets 模块包含许多真实世界视觉数据的 Dataset 对象,例如 CIFAR、COCO(完整列表在此)。在本教程中,我们使用 FashionMNIST 数据集。每个 TorchVision Dataset 都包含两个参数:transformtarget_transform,分别用于修改样本和标签。

# Download training data from open datasets.
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
)

# Download test data from open datasets.
test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor(),
)
  0%|          | 0.00/26.4M [00:00<?, ?B/s]
  0%|          | 65.5k/26.4M [00:00<01:12, 362kB/s]
  1%|          | 229k/26.4M [00:00<00:38, 682kB/s]
  3%|3         | 918k/26.4M [00:00<00:09, 2.59MB/s]
  7%|7         | 1.93M/26.4M [00:00<00:05, 4.11MB/s]
 25%|##5       | 6.65M/26.4M [00:00<00:01, 15.4MB/s]
 38%|###8      | 10.1M/26.4M [00:00<00:00, 17.4MB/s]
 58%|#####7    | 15.3M/26.4M [00:01<00:00, 26.1MB/s]
 72%|#######2  | 19.1M/26.4M [00:01<00:00, 29.3MB/s]
 85%|########5 | 22.5M/26.4M [00:01<00:00, 26.2MB/s]
100%|##########| 26.4M/26.4M [00:01<00:00, 19.4MB/s]

  0%|          | 0.00/29.5k [00:00<?, ?B/s]
100%|##########| 29.5k/29.5k [00:00<00:00, 328kB/s]

  0%|          | 0.00/4.42M [00:00<?, ?B/s]
  1%|1         | 65.5k/4.42M [00:00<00:12, 360kB/s]
  5%|5         | 229k/4.42M [00:00<00:06, 679kB/s]
 19%|#9        | 852k/4.42M [00:00<00:01, 2.31MB/s]
 44%|####3     | 1.93M/4.42M [00:00<00:00, 4.16MB/s]
100%|##########| 4.42M/4.42M [00:00<00:00, 6.07MB/s]

  0%|          | 0.00/5.15k [00:00<?, ?B/s]
100%|##########| 5.15k/5.15k [00:00<00:00, 64.5MB/s]

我们将 Dataset 作为参数传递给 DataLoader。这会在我们的数据集上封装一个可迭代对象,并支持自动批量处理、采样、洗牌和多进程数据加载。这里我们将批次大小定义为 64,也就是说,数据加载器可迭代对象中的每个元素将返回包含 64 个特征和标签的批次。

batch_size = 64

# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)

for X, y in test_dataloader:
    print(f"Shape of X [N, C, H, W]: {X.shape}")
    print(f"Shape of y: {y.shape} {y.dtype}")
    break
Shape of X [N, C, H, W]: torch.Size([64, 1, 28, 28])
Shape of y: torch.Size([64]) torch.int64

阅读更多关于在 PyTorch 中加载数据的信息。


创建模型

为了在 PyTorch 中定义神经网络,我们创建一个继承自 nn.Module 的类。我们在 __init__ 函数中定义网络的层,并在 forward 函数中指定数据如何通过网络。为了加速神经网络中的运算,我们将其移动到 加速器,例如 CUDA、MPS、MTIA 或 XPU。如果当前加速器可用,我们将使用它。否则,我们使用 CPU。

device = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
print(f"Using {device} device")

# Define model
class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10)
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

model = NeuralNetwork().to(device)
print(model)
Using cuda device
NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
  )
)

阅读更多关于在 PyTorch 中构建神经网络的信息。


优化模型参数

要训练模型,我们需要一个损失函数和一个优化器

在一个训练循环中,模型对训练数据集(以批次形式输入)进行预测,并通过反向传播预测误差来调整模型的参数。

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    model.train()
    for batch, (X, y) in enumerate(dataloader):
        X, y = X.to(device), y.to(device)

        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        if batch % 100 == 0:
            loss, current = loss.item(), (batch + 1) * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")

我们还会对照测试数据集检查模型的性能,以确保它正在学习。

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

训练过程会进行多次迭代(epochs,即周期)。在每个周期中,模型会学习参数以进行更好的预测。我们在每个周期打印模型的准确率和损失;我们希望看到准确率随周期增加而提高,损失随周期增加而减少。

epochs = 5
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(train_dataloader, model, loss_fn, optimizer)
    test(test_dataloader, model, loss_fn)
print("Done!")
Epoch 1
-------------------------------
loss: 2.303494  [   64/60000]
loss: 2.294637  [ 6464/60000]
loss: 2.277102  [12864/60000]
loss: 2.269977  [19264/60000]
loss: 2.254234  [25664/60000]
loss: 2.237145  [32064/60000]
loss: 2.231056  [38464/60000]
loss: 2.205036  [44864/60000]
loss: 2.203239  [51264/60000]
loss: 2.170890  [57664/60000]
Test Error:
 Accuracy: 53.9%, Avg loss: 2.168587

Epoch 2
-------------------------------
loss: 2.177784  [   64/60000]
loss: 2.168083  [ 6464/60000]
loss: 2.114908  [12864/60000]
loss: 2.130411  [19264/60000]
loss: 2.087470  [25664/60000]
loss: 2.039667  [32064/60000]
loss: 2.054271  [38464/60000]
loss: 1.985452  [44864/60000]
loss: 1.996019  [51264/60000]
loss: 1.917239  [57664/60000]
Test Error:
 Accuracy: 60.2%, Avg loss: 1.920371

Epoch 3
-------------------------------
loss: 1.951699  [   64/60000]
loss: 1.919513  [ 6464/60000]
loss: 1.808724  [12864/60000]
loss: 1.846544  [19264/60000]
loss: 1.740612  [25664/60000]
loss: 1.698728  [32064/60000]
loss: 1.708887  [38464/60000]
loss: 1.614431  [44864/60000]
loss: 1.646473  [51264/60000]
loss: 1.524302  [57664/60000]
Test Error:
 Accuracy: 61.4%, Avg loss: 1.547089

Epoch 4
-------------------------------
loss: 1.612693  [   64/60000]
loss: 1.570868  [ 6464/60000]
loss: 1.424729  [12864/60000]
loss: 1.489538  [19264/60000]
loss: 1.367247  [25664/60000]
loss: 1.373463  [32064/60000]
loss: 1.376742  [38464/60000]
loss: 1.304958  [44864/60000]
loss: 1.347153  [51264/60000]
loss: 1.230657  [57664/60000]
Test Error:
 Accuracy: 62.7%, Avg loss: 1.260888

Epoch 5
-------------------------------
loss: 1.337799  [   64/60000]
loss: 1.313273  [ 6464/60000]
loss: 1.151835  [12864/60000]
loss: 1.252141  [19264/60000]
loss: 1.123040  [25664/60000]
loss: 1.159529  [32064/60000]
loss: 1.175010  [38464/60000]
loss: 1.115551  [44864/60000]
loss: 1.160972  [51264/60000]
loss: 1.062725  [57664/60000]
Test Error:
 Accuracy: 64.6%, Avg loss: 1.087372

Done!

阅读更多关于训练你的模型的信息。


保存模型

保存模型的常用方法是序列化内部状态字典(包含模型参数)。

torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
Saved PyTorch Model State to model.pth

加载模型

加载模型的过程包括重新创建模型结构并将状态字典加载到其中。

model = NeuralNetwork().to(device)
model.load_state_dict(torch.load("model.pth", weights_only=True))
<All keys matched successfully>

这个模型现在可以用于进行预测。

classes = [
    "T-shirt/top",
    "Trouser",
    "Pullover",
    "Dress",
    "Coat",
    "Sandal",
    "Shirt",
    "Sneaker",
    "Bag",
    "Ankle boot",
]

model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
    x = x.to(device)
    pred = model(x)
    predicted, actual = classes[pred[0].argmax(0)], classes[y]
    print(f'Predicted: "{predicted}", Actual: "{actual}"')
Predicted: "Ankle boot", Actual: "Ankle boot"

阅读更多关于保存与加载你的模型的信息。

脚本总运行时间: ( 0 分 36.021 秒)

由 Sphinx-Gallery 生成的图库

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取面向初学者和高级开发者的深入教程

查看教程

资源

查找开发资源并获得问题解答

查看资源