自定义 C++ 和 CUDA 算子¶
创建于: 2024年6月18日 | 最后更新于: 2025年1月28日 | 最后验证于: 2024年11月5日
作者: Richard Zou
如何将用 C++/CUDA 编写的自定义算子集成到 PyTorch 中
如何使用
torch.library.opcheck
测试自定义算子
PyTorch 2.4 或更高版本
具备 C++ 和 CUDA 编程基础知识
注意
本教程同样适用于 AMD ROCm,无需额外修改。
PyTorch 提供了大量的算子用于处理张量(例如 torch.add, torch.sum 等)。然而,你可能希望向 PyTorch 引入新的自定义算子。本教程演示了编写 C++/CUDA 自定义算子的推荐方法。
在本教程中,我们将演示如何编写一个融合的乘加 C++ 和 CUDA 算子,并使其与 PyTorch 子系统兼容。该操作的语义如下:
def mymuladd(a: Tensor, b: Tensor, c: float):
return a * b + c
你可以在此处找到本教程的端到端工作示例。
设置构建系统¶
如果你正在开发自定义 C++/CUDA 代码,则必须对其进行编译。请注意,如果你只是与已绑定到预编译 C++/CUDA 代码的 Python 库进行接口,你可能需要考虑编写自定义 Python 算子(自定义 Python 算子)。
使用torch.utils.cpp_extension 来编译自定义 C++/CUDA 代码,以便与 PyTorch C++ 扩展一起使用。扩展可以通过 setuptools 进行“提前”构建,也可以通过load_inline进行“即时”构建;我们将重点关注“提前”构建的方式。
使用 cpp_extension
就像编写如下 setup.py
文件一样简单:
from setuptools import setup, Extension
from torch.utils import cpp_extension
setup(name="extension_cpp",
ext_modules=[
cpp_extension.CppExtension(
"extension_cpp",
["muladd.cpp"],
# define Py_LIMITED_API with min version 3.9 to expose only the stable
# limited API subset from Python.h
extra_compile_args={"cxx": ["-DPy_LIMITED_API=0x03090000"]},
py_limited_api=True)], # Build 1 wheel across multiple Python versions
cmdclass={'build_ext': cpp_extension.BuildExtension},
options={"bdist_wheel": {"py_limited_api": "cp39"}} # 3.9 is minimum supported Python version
)
如果你需要编译 CUDA 代码(例如 .cu
文件),则应改用torch.utils.cpp_extension.CUDAExtension。请参阅extension-cpp 以获取如何设置此项的示例。
上面的示例代表了我们所谓的 CPython 无关 wheel,意味着我们构建一个可在多个 CPython 版本上运行的 wheel(类似于纯 Python 包)。CPython 无关性有助于最大限度地减少自定义库需要支持和发布的 wheel 数量。我们希望支持的最低版本是 3.9,因为它是当前支持的最旧版本,因此我们在整个 setup 代码中使用了相应的 hexcode 和 specifier。我们建议在与你想要支持的最低 CPython 版本相同的环境中构建扩展,以尽量减少未知行为,因此,在此,我们在 CPython 3.9 环境中构建扩展。构建完成后,这一个 wheel 将可以在任何 CPython 3.9+ 环境中运行。为了实现这一点,有三行关键代码需要注意。
第一行是在 extra_compile_args
中指定 Py_LIMITED_API
为你想要支持的最低 CPython 版本:
extra_compile_args={"cxx": ["-DPy_LIMITED_API=0x03090000"]},
定义 Py_LIMITED_API
标志有助于验证扩展实际上仅使用了CPython 稳定有限 API,这是构建 CPython 无关 wheel 的要求。如果未满足此要求,可能会构建一个看起来是 CPython 无关的 wheel,但在另一个 CPython 环境中崩溃,甚至更糟,会静默地不正确。请注意避免使用不稳定的 CPython API,例如 libtorch_python 中的 API(特别是 pytorch/python 绑定),并且仅使用 libtorch 中的 API(ATen 对象、算子和调度器)。我们强烈建议定义 Py_LIMITED_API
标志,以帮助确定扩展是否符合要求并可作为 CPython 无关 wheel 安全使用。请注意,定义此标志并不能完全保证构建的 wheel 是 CPython 无关的,但这比在完全不可控的情况下要好得多。Python 文档中提到了几个注意事项,你应该自行测试和验证 wheel 是否在相关的 CPython 版本中真正无关。
第二行和第三行指定 py_limited_api
,这会通知 setuptools 你打算构建一个 CPython 无关 wheel,并会影响 wheel 的命名:
setup(name="extension_cpp",
ext_modules=[
cpp_extension.CppExtension(
...,
py_limited_api=True)], # Build 1 wheel across multiple Python versions
...,
options={"bdist_wheel": {"py_limited_api": "cp39"}} # 3.9 is minimum supported Python version
)
有必要将 py_limited_api=True
指定为 CppExtension/CUDAExtension 的参数,并且也作为 "bdist_wheel"
命令的一个选项,并带有最低支持的 CPython 版本(在本例中为 3.9)。因此,本教程中的 setup
将构建一个正确命名的 wheel,可以在多个 CPython 版本 >=3.9
上安装。
如果你的扩展使用了稳定有限集之外的 CPython API,那么你就不能构建 CPython 无关 wheel!你应该针对每个 CPython 版本构建一个 wheel,如下所示:
from setuptools import setup, Extension
from torch.utils import cpp_extension
setup(name="extension_cpp",
ext_modules=[
cpp_extension.CppExtension(
"extension_cpp",
["muladd.cpp"])],
cmdclass={'build_ext': cpp_extension.BuildExtension},
)
定义自定义算子并添加后端实现¶
首先,让我们编写一个计算 mymuladd
的 C++ 函数:
at::Tensor mymuladd_cpu(at::Tensor a, const at::Tensor& b, double c) {
TORCH_CHECK(a.sizes() == b.sizes());
TORCH_CHECK(a.dtype() == at::kFloat);
TORCH_CHECK(b.dtype() == at::kFloat);
TORCH_INTERNAL_ASSERT(a.device().type() == at::DeviceType::CPU);
TORCH_INTERNAL_ASSERT(b.device().type() == at::DeviceType::CPU);
at::Tensor a_contig = a.contiguous();
at::Tensor b_contig = b.contiguous();
at::Tensor result = torch::empty(a_contig.sizes(), a_contig.options());
const float* a_ptr = a_contig.data_ptr<float>();
const float* b_ptr = b_contig.data_ptr<float>();
float* result_ptr = result.data_ptr<float>();
for (int64_t i = 0; i < result.numel(); i++) {
result_ptr[i] = a_ptr[i] * b_ptr[i] + c;
}
return result;
}
为了在 PyTorch 的 Python 前端中使用它,我们需要使用 TORCH_LIBRARY
API 将其注册为 PyTorch 算子。这将自动将该算子绑定到 Python。
算子注册是两步过程:
定义算子 - 此步骤确保 PyTorch 知道新算子。
注册后端实现 - 在此步骤中,将各种后端(如 CPU 和 CUDA)的实现与算子关联。
定义算子¶
要定义一个算子,请遵循以下步骤:
为算子选择一个命名空间。我们建议命名空间是你顶层项目的名称;在本教程中,我们将使用“extension_cpp”。
提供一个模式字符串,指定算子的输入/输出类型以及输入张量是否会被修改。除了 Tensor 和 float,我们还支持更多类型;请参阅自定义算子手册了解更多详细信息。
如果你正在编写一个可以修改其输入张量的算子,请参阅此处(创建可变算子)了解如何指定。
TORCH_LIBRARY(extension_cpp, m) {
// Note that "float" in the schema corresponds to the C++ double type
// and the Python float type.
m.def("mymuladd(Tensor a, Tensor b, float c) -> Tensor");
}
这使得该算子可以通过 torch.ops.extension_cpp.mymuladd
在 Python 中可用。
注册算子的后端实现¶
使用 TORCH_LIBRARY_IMPL
为算子注册后端实现。
TORCH_LIBRARY_IMPL(extension_cpp, CPU, m) {
m.impl("mymuladd", &mymuladd_cpu);
}
如果你也有 myaddmul
的 CUDA 实现,可以在单独的 TORCH_LIBRARY_IMPL
块中注册它:
__global__ void muladd_kernel(int numel, const float* a, const float* b, float c, float* result) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < numel) result[idx] = a[idx] * b[idx] + c;
}
at::Tensor mymuladd_cuda(const at::Tensor& a, const at::Tensor& b, double c) {
TORCH_CHECK(a.sizes() == b.sizes());
TORCH_CHECK(a.dtype() == at::kFloat);
TORCH_CHECK(b.dtype() == at::kFloat);
TORCH_INTERNAL_ASSERT(a.device().type() == at::DeviceType::CUDA);
TORCH_INTERNAL_ASSERT(b.device().type() == at::DeviceType::CUDA);
at::Tensor a_contig = a.contiguous();
at::Tensor b_contig = b.contiguous();
at::Tensor result = torch::empty(a_contig.sizes(), a_contig.options());
const float* a_ptr = a_contig.data_ptr<float>();
const float* b_ptr = b_contig.data_ptr<float>();
float* result_ptr = result.data_ptr<float>();
int numel = a_contig.numel();
muladd_kernel<<<(numel+255)/256, 256>>>(numel, a_ptr, b_ptr, c, result_ptr);
return result;
}
TORCH_LIBRARY_IMPL(extension_cpp, CUDA, m) {
m.impl("mymuladd", &mymuladd_cuda);
}
为算子添加 torch.compile
支持¶
为了为算子添加 torch.compile
支持,我们必须添加一个 FakeTensor 核(也称为“meta 核”或“抽象实现”)。FakeTensor 是具有元数据(如形状、dtype、设备)但没有数据的张量:算子的 FakeTensor 核指定了如何根据输入张量的元数据计算输出张量的元数据。FakeTensor 核应返回你选择的带有正确张量元数据(形状/跨步/dtype
/设备)的虚拟张量。
我们建议通过 torch.library.register_fake
API 从 Python 中完成此操作,尽管也可以从 C++ 中完成(详情请参阅自定义算子手册)。
# Important: the C++ custom operator definitions should be loaded first
# before calling ``torch.library`` APIs that add registrations for the
# C++ custom operator(s). The following import loads our
# C++ custom operator definitions.
# Note that if you are striving for Python agnosticism, you should use
# the ``load_library(...)`` API call instead. See the next section for
# more details.
from . import _C
@torch.library.register_fake("extension_cpp::mymuladd")
def _(a, b, c):
torch._check(a.shape == b.shape)
torch._check(a.dtype == torch.float)
torch._check(b.dtype == torch.float)
torch._check(a.device == b.device)
return torch.empty_like(a)
设置混合 Python/C++ 注册¶
在本教程中,我们在 C++ 中定义了一个自定义算子,在 C++ 中添加了 CPU/CUDA 实现,并在 Python 中添加了 FakeTensor
核和反向公式。这些注册被加载(或导入)的顺序很重要(以错误的顺序导入会导致错误)。
要使用混合 Python/C++ 注册的自定义算子,我们必须首先加载包含自定义算子定义的 C++ 库,然后调用 torch.library
注册 API。这可以通过三种方式实现:
加载包含自定义算子定义的 C++ 库的第一种方法是为 _C 定义一个虚拟 Python 模块。然后,在 Python 中,当你使用
import _C
导入模块时,与扩展对应的.so
文件将被加载,并且TORCH_LIBRARY
和TORCH_LIBRARY_IMPL
静态初始化器将运行。可以使用如下所示的PYBIND11_MODULE
创建一个虚拟 Python 模块,但你会注意到这不能与Py_LIMITED_API
一起编译,因为pybind11
不保证只使用稳定的有限 CPython API!有了下面的代码,你遗憾地无法为你的扩展构建 CPython 无关 wheel!(预示:我想知道第二种方法是什么 ;))。
// in, say, not_agnostic/csrc/extension_BAD.cpp
#include <pybind11/pybind11.h>
PYBIND11_MODULE("_C", m) {}
# in, say, extension/__init__.py
from . import _C
在本教程中,由于我们重视能够构建一个跨多个 CPython 版本的 wheel,我们将用稳定的 API 调用替换不稳定的
PYBIND11
调用。下面的代码可以用-DPy_LIMITED_API=0x03090000
编译,并成功为我们的_C
扩展创建一个虚拟 Python 模块,以便可以从 Python 中导入。详情请参阅extension_cpp/__init__.py 和extension_cpp/csrc/muladd.cpp
#include <Python.h>
extern "C" {
/* Creates a dummy empty _C module that can be imported from Python.
The import from Python will load the .so consisting of this file
in this extension, so that the TORCH_LIBRARY static initializers
below are run. */
PyObject* PyInit__C(void)
{
static struct PyModuleDef module_def = {
PyModuleDef_HEAD_INIT,
"_C", /* name of module */
NULL, /* module documentation, may be NULL */
-1, /* size of per-interpreter state of the module,
or -1 if the module keeps state in global variables. */
NULL, /* methods */
};
return PyModule_Create(&module_def);
}
}
# in, say, extension/__init__.py
from . import _C
如果你想在 C++ 自定义算子中完全避免使用
Python.h
,可以在 Python 中使用torch.ops.load_library("/path/to/library.so")
来加载从扩展编译的.so
文件。请注意,使用此方法,不会为扩展创建_C
Python 模块,因此你无法从 Python 中调用import _C
。与其依赖导入语句触发自定义算子注册,torch.ops.load_library("/path/to/library.so")
可以完成这项工作。挑战在于理解.so
文件位于何处,以便你可以加载它们,但这并不总是那么容易:
import torch
from pathlib import Path
so_files = list(Path(__file__).parent.glob("_C*.so"))
assert (
len(so_files) == 1
), f"Expected one _C*.so file, found {len(so_files)}"
torch.ops.load_library(so_files[0])
from . import ops
为算子添加训练 (autograd) 支持¶
使用 torch.library.register_autograd
为算子添加训练支持。建议优先使用此方法,而不是直接使用 Python torch.autograd.Function
或 C++ torch::autograd::Function
;使用它们的方式必须非常特定,以避免静默错误(详细信息请参阅自定义算子手册)。
def _backward(ctx, grad):
a, b = ctx.saved_tensors
grad_a, grad_b = None, None
if ctx.needs_input_grad[0]:
grad_a = grad * b
if ctx.needs_input_grad[1]:
grad_b = grad * a
return grad_a, grad_b, None
def _setup_context(ctx, inputs, output):
a, b, c = inputs
saved_a, saved_b = None, None
if ctx.needs_input_grad[0]:
saved_b = b
if ctx.needs_input_grad[1]:
saved_a = a
ctx.save_for_backward(saved_a, saved_b)
# This code adds training support for the operator. You must provide us
# the backward formula for the operator and a `setup_context` function
# to save values to be used in the backward.
torch.library.register_autograd(
"extension_cpp::mymuladd", _backward, setup_context=_setup_context)
请注意,反向传播必须由 PyTorch 可理解的算子组成。如果你希望在反向传播中使用另一个自定义 C++ 或 CUDA 核,它必须被封装成一个自定义算子。
如果我们有自己的自定义 mymul
核,我们需要将其封装成一个自定义算子,然后从反向传播中调用它:
// New! a mymul_cpu kernel
at::Tensor mymul_cpu(const at::Tensor& a, const at::Tensor& b) {
TORCH_CHECK(a.sizes() == b.sizes());
TORCH_CHECK(a.dtype() == at::kFloat);
TORCH_CHECK(b.dtype() == at::kFloat);
TORCH_CHECK(a.device().type() == at::DeviceType::CPU);
TORCH_CHECK(b.device().type() == at::DeviceType::CPU);
at::Tensor a_contig = a.contiguous();
at::Tensor b_contig = b.contiguous();
at::Tensor result = torch::empty(a_contig.sizes(), a_contig.options());
const float* a_ptr = a_contig.data_ptr<float>();
const float* b_ptr = b_contig.data_ptr<float>();
float* result_ptr = result.data_ptr<float>();
for (int64_t i = 0; i < result.numel(); i++) {
result_ptr[i] = a_ptr[i] * b_ptr[i];
}
return result;
}
TORCH_LIBRARY(extension_cpp, m) {
m.def("mymuladd(Tensor a, Tensor b, float c) -> Tensor");
// New! defining the mymul operator
m.def("mymul(Tensor a, Tensor b) -> Tensor");
}
TORCH_LIBRARY_IMPL(extension_cpp, CPU, m) {
m.impl("mymuladd", &mymuladd_cpu);
// New! registering the cpu kernel for the mymul operator
m.impl("mymul", &mymul_cpu);
}
def _backward(ctx, grad):
a, b = ctx.saved_tensors
grad_a, grad_b = None, None
if ctx.needs_input_grad[0]:
grad_a = torch.ops.extension_cpp.mymul.default(grad, b)
if ctx.needs_input_grad[1]:
grad_b = torch.ops.extension_cpp.mymul.default(grad, a)
return grad_a, grad_b, None
def _setup_context(ctx, inputs, output):
a, b, c = inputs
saved_a, saved_b = None, None
if ctx.needs_input_grad[0]:
saved_b = b
if ctx.needs_input_grad[1]:
saved_a = a
ctx.save_for_backward(saved_a, saved_b)
# This code adds training support for the operator. You must provide us
# the backward formula for the operator and a `setup_context` function
# to save values to be used in the backward.
torch.library.register_autograd(
"extension_cpp::mymuladd", _backward, setup_context=_setup_context)
测试算子¶
使用 torch.library.opcheck
来测试自定义算子是否正确注册。请注意,此函数不测试梯度在数学上是否正确——请计划为此编写单独的测试,无论是手动测试还是使用 torch.autograd.gradcheck
。
def sample_inputs(device, *, requires_grad=False):
def make_tensor(*size):
return torch.randn(size, device=device, requires_grad=requires_grad)
def make_nondiff_tensor(*size):
return torch.randn(size, device=device, requires_grad=False)
return [
[make_tensor(3), make_tensor(3), 1],
[make_tensor(20), make_tensor(20), 3.14],
[make_tensor(20), make_nondiff_tensor(20), -123],
[make_nondiff_tensor(2, 3), make_tensor(2, 3), -0.3],
]
def reference_muladd(a, b, c):
return a * b + c
samples = sample_inputs(device, requires_grad=True)
samples.extend(sample_inputs(device, requires_grad=False))
for args in samples:
# Correctness test
result = torch.ops.extension_cpp.mymuladd(*args)
expected = reference_muladd(*args)
torch.testing.assert_close(result, expected)
# Use opcheck to check for incorrect usage of operator registration APIs
torch.library.opcheck(torch.ops.extension_cpp.mymuladd.default, args)
创建可变算子¶
你可能希望编写一个修改其输入的自定义算子。使用 Tensor(a!)
来指定模式中每个可变张量;否则,行为将未定义。如果有多个可变张量,请为每个可变张量使用不同的名称(例如,Tensor(a!)
、Tensor(b!)
、Tensor(c!)
)。
让我们编写一个 myadd_out(a, b, out)
算子,它将 a+b
的内容写入 out
。
// An example of an operator that mutates one of its inputs.
void myadd_out_cpu(const at::Tensor& a, const at::Tensor& b, at::Tensor& out) {
TORCH_CHECK(a.sizes() == b.sizes());
TORCH_CHECK(b.sizes() == out.sizes());
TORCH_CHECK(a.dtype() == at::kFloat);
TORCH_CHECK(b.dtype() == at::kFloat);
TORCH_CHECK(out.dtype() == at::kFloat);
TORCH_CHECK(out.is_contiguous());
TORCH_INTERNAL_ASSERT(a.device().type() == at::DeviceType::CPU);
TORCH_INTERNAL_ASSERT(b.device().type() == at::DeviceType::CPU);
TORCH_INTERNAL_ASSERT(out.device().type() == at::DeviceType::CPU);
at::Tensor a_contig = a.contiguous();
at::Tensor b_contig = b.contiguous();
const float* a_ptr = a_contig.data_ptr<float>();
const float* b_ptr = b_contig.data_ptr<float>();
float* result_ptr = out.data_ptr<float>();
for (int64_t i = 0; i < out.numel(); i++) {
result_ptr[i] = a_ptr[i] + b_ptr[i];
}
}
定义算子时,必须在模式中指定它会修改 out 张量:
TORCH_LIBRARY(extension_cpp, m) {
m.def("mymuladd(Tensor a, Tensor b, float c) -> Tensor");
m.def("mymul(Tensor a, Tensor b) -> Tensor");
// New!
m.def("myadd_out(Tensor a, Tensor b, Tensor(a!) out) -> ()");
}
TORCH_LIBRARY_IMPL(extension_cpp, CPU, m) {
m.impl("mymuladd", &mymuladd_cpu);
m.impl("mymul", &mymul_cpu);
// New!
m.impl("myadd_out", &myadd_out_cpu);
}
注意
不要将任何被修改的张量作为算子的输出返回,因为这会导致与 PyTorch 子系统(如 torch.compile
)不兼容。