快捷方式

学习基础知识 || 快速入门 || 张量 || 数据集和数据加载器 || 转换 || 构建模型 || 自动微分 || 优化 || 保存和加载模型

转换

数据并不总是以机器学习算法训练所需的最终处理形式出现。我们使用转换对数据进行一些操作,使其适合训练。

所有 TorchVision 数据集都有两个参数 -transform 用于修改特征,target_transform 用于修改标签 - 它们接受包含转换逻辑的可调用对象。 torchvision.transforms 模块提供了许多常用的现成转换。

FashionMNIST 的特征采用 PIL Image 格式,标签为整数。为了进行训练,我们需要将特征转换为归一化的张量,并将标签转换为独热编码的张量。为了进行这些转换,我们使用 ToTensorLambda

import torch
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda

ds = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
    target_transform=Lambda(lambda y: torch.zeros(10, dtype=torch.float).scatter_(0, torch.tensor(y), value=1))
)
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to data/FashionMNIST/raw/train-images-idx3-ubyte.gz

  0%|          | 0.00/26.4M [00:00<?, ?B/s]
  0%|          | 65.5k/26.4M [00:00<01:12, 364kB/s]
  1%|          | 229k/26.4M [00:00<00:38, 683kB/s]
  4%|3         | 950k/26.4M [00:00<00:11, 2.19MB/s]
 15%|#4        | 3.83M/26.4M [00:00<00:02, 7.62MB/s]
 38%|###7      | 10.0M/26.4M [00:00<00:00, 17.2MB/s]
 62%|######1   | 16.3M/26.4M [00:01<00:00, 23.1MB/s]
 85%|########5 | 22.5M/26.4M [00:01<00:00, 26.8MB/s]
100%|##########| 26.4M/26.4M [00:01<00:00, 19.4MB/s]
Extracting data/FashionMNIST/raw/train-images-idx3-ubyte.gz to data/FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw/train-labels-idx1-ubyte.gz

  0%|          | 0.00/29.5k [00:00<?, ?B/s]
100%|##########| 29.5k/29.5k [00:00<00:00, 326kB/s]
Extracting data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz

  0%|          | 0.00/4.42M [00:00<?, ?B/s]
  1%|1         | 65.5k/4.42M [00:00<00:12, 361kB/s]
  5%|5         | 229k/4.42M [00:00<00:06, 679kB/s]
 20%|##        | 885k/4.42M [00:00<00:01, 2.03MB/s]
 63%|######2   | 2.79M/4.42M [00:00<00:00, 6.52MB/s]
100%|##########| 4.42M/4.42M [00:00<00:00, 6.07MB/s]
Extracting data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz

  0%|          | 0.00/5.15k [00:00<?, ?B/s]
100%|##########| 5.15k/5.15k [00:00<00:00, 41.4MB/s]
Extracting data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw

ToTensor()

ToTensor 将 PIL 图像或 NumPy ndarray 转换为 FloatTensor,并将图像的像素强度值缩放至 [0., 1.] 范围内。

Lambda 转换

Lambda 变换应用任何用户定义的 lambda 函数。这里,我们定义了一个函数将整数转换为独热编码张量。它首先创建一个大小为 10 的零张量(数据集中的标签数量),并调用 scatter_,该函数在标签 y 给定的索引处赋值 value=1

target_transform = Lambda(lambda y: torch.zeros(
    10, dtype=torch.float).scatter_(dim=0, index=torch.tensor(y), value=1))

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取针对初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源