注意
点击此处下载完整示例代码
使用 foreach_map 和 torch.compile 实现显式水平融合¶
- 水平融合是机器学习编译器中的一项关键优化。在 eager 模式下,
这通常使用
torch._foreach*
算子来表达,它能对张量列表进行并行化操作。然而,支持所有可能的参数排列组合(例如,标量和列表的混合)非常困难。Foreach_map
允许将torch
中的任何逐点算子转换为水平融合的 foreach 变体。在本教程中,我们将演示如何使用foreach_map
实现 Adam 优化器,以生成一个完全融合的 kernel。
注意
本 recipe 描述了一个原型功能。原型功能通常处于早期阶段,用于收集反馈和进行测试,可能会发生变化。
先决条件¶
PyTorch v2.7.0 或更高版本
模型设置¶
在此示例中,我们将使用一个简单的线性层序列。我们实例化一个独立的副本,以比较两种优化器的实现。
import torch
# exit cleanly if we are on a device that doesn't support ``torch.compile``
if torch.cuda.get_device_capability() < (7, 0):
print("Exiting because torch.compile is not supported on this device.")
import sys
sys.exit(0)
# Create simple model
model = torch.nn.Sequential(
*[torch.nn.Linear(1024, 1024, False, device="cuda") for _ in range(10)]
)
model_copy = torch.nn.Sequential(
*[torch.nn.Linear(1024, 1024, False, device="cuda") for _ in range(10)]
)
input = torch.rand(1024, device="cuda")
# run forward pass
output = model(input)
output_copy = model_copy(input)
# run backward to populate the grads for our optimizer below
output.sum().backward()
output_copy.sum().backward()
foreach_map 实现的辅助函数¶
在本节中,我们将开始实现 Adam 优化器。
from torch._higher_order_ops.foreach_map import foreach_map
# Helper function to extract optimizer states from a torch.optim.Adam instance
def get_inputs(optim):
steps = []
params = []
grads = []
exp_avgs = []
exp_avg_sqs = []
for group in optim.param_groups:
for p in group["params"]:
params.append(p)
grads.append(p.grad)
state = optim.state[p]
exp_avgs.append(state["exp_avg"])
exp_avg_sqs.append(state["exp_avg_sq"])
steps.append(state["step"])
return steps, params, exp_avgs, exp_avg_sqs
# Functions to update the different optimizer states
def update_exp_avg_sq(exp_avg_sq, grad, beta2):
return exp_avg_sq.mul(beta2).addcmul(grad, grad, value=1 - beta2)
def update_param(param, step, exp_avg, exp_avg_sq, beta1, beta2, lr, eps):
bias_correction1 = 1 - torch.pow(beta1, step)
bias_correction2 = (1 - torch.pow(beta2, step)).sqrt()
step_size = (lr / bias_correction1).neg()
denom = (exp_avg_sq.sqrt() / (bias_correction2 * step_size)).add(eps / step_size)
return torch.add(param, torch.div(exp_avg, denom))
# Our full Adam implementation
def foreach_map_adam(
steps,
params,
exp_avgs,
exp_avg_sqs,
weight_decay=0,
beta1=0.9,
beta2=0.999,
lr=1e-3,
eps=1e-8,
):
with torch.no_grad():
grads = [param.grad for param in params]
# update step
updated_steps = foreach_map(lambda x: x + 1, steps)
torch._foreach_copy_(steps, updated_steps)
if weight_decay != 0:
foreach_map(torch.add, (grads,), alpha=weight_decay)
# Higher-order operators (HOPs) cannot have multiple outputs at the moment
# need to call foreach_map once for each output
exp_avgs_updated = foreach_map(torch.lerp, exp_avgs, grads, 1 - beta1)
exp_avgs_sq_updated = foreach_map(update_exp_avg_sq, exp_avg_sqs, grads, beta2)
params_updated = foreach_map(
update_param,
params,
steps,
exp_avgs_updated,
exp_avgs_sq_updated,
beta1,
beta2,
lr,
eps,
)
# Higher-order operators (HOPs) don't support input mutation today
# so manually update the states in-place
torch._foreach_copy_(exp_avgs, exp_avgs_updated)
torch._foreach_copy_(exp_avg_sqs, exp_avgs_sq_updated)
torch._foreach_copy_(params, params_updated)
return
设置并运行编译后的 kernel¶
在本节中,我们将运行 Adam 优化器并比较结果
注意
torch.compile
仅支持计算能力为 7.0 或更高的 CUDA 设备。
opt_eager = torch.optim.Adam(model.parameters(), lr=torch.tensor(0.01))
opt_eager_copy = torch.optim.Adam(model_copy.parameters(), lr=torch.tensor(0.01))
# warm up the optimizer state dict
opt_eager.step()
opt_eager_copy.step()
inputs = get_inputs(opt_eager_copy)
compiled_adam = torch.compile(foreach_map_adam)
# optionally view the output code
torch._logging.set_logs(output_code=True)
# Warmup runs to compile the function
for _ in range(5):
opt_eager.step()
compiled_adam(*inputs)
for eager_p, compile_p in zip(opt_eager.param_groups[0]["params"], opt_eager_copy.param_groups[0]["params"]):
torch.allclose(eager_p, compile_p)
# Benchmark performance
# Let's define a helpful benchmarking function:
import torch.utils.benchmark as benchmark
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
)
return t0.blocked_autorange().mean * 1e6
eager_runtime = benchmark_torch_function_in_microseconds(opt_eager.step)
compiled_runtime = benchmark_torch_function_in_microseconds(lambda: compiled_adam(*inputs))
assert eager_runtime > compiled_runtime
print(f"eager runtime: {eager_runtime}us")
print(f"compiled runtime: {compiled_runtime}us")
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] Output code:
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] # AOT ID: ['0_inference']
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from ctypes import c_void_p, c_long, c_int
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] import torch
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] import math
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] import random
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] import os
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] import tempfile
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from math import inf, nan
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from cmath import nanj
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.hooks import run_intermediate_hooks
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.utils import maybe_profile
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.codegen.memory_planning import _align as align
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch import device, empty_strided
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.async_compile import AsyncCompile
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.select_algorithm import extern_kernels
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.codegen.multi_kernel import MultiKernelCall
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._C import _cuda_getCurrentRawStream as get_raw_stream
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] import triton
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] import triton.language as tl
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.runtime.triton_heuristics import start_graph, end_graph
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._C import _cuda_getCurrentRawStream as get_raw_stream
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] aten = torch.ops.aten
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] inductor_ops = torch.ops.inductor
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] _quantized = torch.ops._quantized
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride = torch._C._dynamo.guards.assert_size_stride
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] alloc_from_pool = torch.ops.inductor._alloc_from_pool
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] async_compile = AsyncCompile()
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] empty_strided_p2p = torch._C._distributed_c10d._SymmetricMemory.empty_strided_p2p
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] # kernel path: /tmp/torchinductor_ci-user/zj/czjmfxlolmpzwn2v3n3eizsgjh75uuu75c4js74axzhym4alua4n.py
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] # Unsorted Source Nodes: [], Original ATen: []
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] # Source node to ATen node mapping:
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] triton_for_fused_0 = async_compile.triton('triton_for_fused_0', '''
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] import triton
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] import triton.language as tl
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.runtime import triton_helpers, triton_heuristics
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, DeviceProperties
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] @triton_heuristics.foreach(
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_warps=8,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] triton_meta={'signature': {'in_ptr0': '*fp32', 'in_ptr1': '*fp32', 'in_ptr2': '*fp32', 'in_ptr3': '*fp32', 'in_ptr4': 'fp32', 'in_ptr5': '*fp32', 'in_ptr6': '*fp32', 'in_ptr7': '*fp32', 'in_ptr8': '*fp32', 'in_ptr9': 'fp32', 'in_ptr10': '*fp32', 'in_ptr11': '*fp32', 'in_ptr12': '*fp32', 'in_ptr13': '*fp32', 'in_ptr14': 'fp32', 'in_ptr15': '*fp32', 'in_ptr16': '*fp32', 'in_ptr17': '*fp32', 'in_ptr18': '*fp32', 'in_ptr19': 'fp32', 'in_ptr20': '*fp32', 'in_ptr21': '*fp32', 'in_ptr22': '*fp32', 'in_ptr23': '*fp32', 'in_ptr24': 'fp32', 'in_ptr25': '*fp32', 'in_ptr26': '*fp32', 'in_ptr27': '*fp32', 'in_ptr28': '*fp32', 'in_ptr29': 'fp32', 'in_ptr30': '*fp32', 'in_ptr31': '*fp32', 'in_ptr32': '*fp32', 'in_ptr33': '*fp32', 'in_ptr34': 'fp32', 'in_ptr35': '*fp32', 'in_ptr36': '*fp32', 'in_ptr37': '*fp32', 'in_ptr38': '*fp32', 'in_ptr39': 'fp32', 'in_ptr40': '*fp32', 'in_ptr41': '*fp32', 'in_ptr42': '*fp32', 'in_ptr43': '*fp32', 'in_ptr44': 'fp32', 'in_ptr45': '*fp32', 'in_ptr46': '*fp32', 'in_ptr47': '*fp32', 'in_ptr48': '*fp32', 'in_ptr49': 'fp32', 'out_ptr6': '*fp32', 'out_ptr7': '*fp32', 'out_ptr8': '*fp32', 'out_ptr15': '*fp32', 'out_ptr16': '*fp32', 'out_ptr17': '*fp32', 'out_ptr24': '*fp32', 'out_ptr25': '*fp32', 'out_ptr26': '*fp32', 'out_ptr33': '*fp32', 'out_ptr34': '*fp32', 'out_ptr35': '*fp32', 'out_ptr42': '*fp32', 'out_ptr43': '*fp32', 'out_ptr44': '*fp32', 'out_ptr51': '*fp32', 'out_ptr52': '*fp32', 'out_ptr53': '*fp32', 'out_ptr60': '*fp32', 'out_ptr61': '*fp32', 'out_ptr62': '*fp32', 'out_ptr69': '*fp32', 'out_ptr70': '*fp32', 'out_ptr71': '*fp32', 'out_ptr78': '*fp32', 'out_ptr79': '*fp32', 'out_ptr80': '*fp32', 'out_ptr87': '*fp32', 'out_ptr88': '*fp32', 'out_ptr89': '*fp32'}, 'device': DeviceProperties(type='cuda', index=0, multi_processor_count=80, cc=86, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, warp_size=32), 'constants': {}, 'configs': [{(0,): [['tt.divisibility', 16]], (1,): [['tt.divisibility', 16]], (2,): [['tt.divisibility', 16]], (3,): [['tt.divisibility', 16]], (5,): [['tt.divisibility', 16]], (6,): [['tt.divisibility', 16]], (7,): [['tt.divisibility', 16]], (8,): [['tt.divisibility', 16]], (10,): [['tt.divisibility', 16]], (11,): [['tt.divisibility', 16]], (12,): [['tt.divisibility', 16]], (13,): [['tt.divisibility', 16]], (15,): [['tt.divisibility', 16]], (16,): [['tt.divisibility', 16]], (17,): [['tt.divisibility', 16]], (18,): [['tt.divisibility', 16]], (20,): [['tt.divisibility', 16]], (21,): [['tt.divisibility', 16]], (22,): [['tt.divisibility', 16]], (23,): [['tt.divisibility', 16]], (25,): [['tt.divisibility', 16]], (26,): [['tt.divisibility', 16]], (27,): [['tt.divisibility', 16]], (28,): [['tt.divisibility', 16]], (30,): [['tt.divisibility', 16]], (31,): [['tt.divisibility', 16]], (32,): [['tt.divisibility', 16]], (33,): [['tt.divisibility', 16]], (35,): [['tt.divisibility', 16]], (36,): [['tt.divisibility', 16]], (37,): [['tt.divisibility', 16]], (38,): [['tt.divisibility', 16]], (40,): [['tt.divisibility', 16]], (41,): [['tt.divisibility', 16]], (42,): [['tt.divisibility', 16]], (43,): [['tt.divisibility', 16]], (45,): [['tt.divisibility', 16]], (46,): [['tt.divisibility', 16]], (47,): [['tt.divisibility', 16]], (48,): [['tt.divisibility', 16]], (50,): [['tt.divisibility', 16]], (51,): [['tt.divisibility', 16]], (52,): [['tt.divisibility', 16]], (53,): [['tt.divisibility', 16]], (54,): [['tt.divisibility', 16]], (55,): [['tt.divisibility', 16]], (56,): [['tt.divisibility', 16]], (57,): [['tt.divisibility', 16]], (58,): [['tt.divisibility', 16]], (59,): [['tt.divisibility', 16]], (60,): [['tt.divisibility', 16]], (61,): [['tt.divisibility', 16]], (62,): [['tt.divisibility', 16]], (63,): [['tt.divisibility', 16]], (64,): [['tt.divisibility', 16]], (65,): [['tt.divisibility', 16]], (66,): [['tt.divisibility', 16]], (67,): [['tt.divisibility', 16]], (68,): [['tt.divisibility', 16]], (69,): [['tt.divisibility', 16]], (70,): [['tt.divisibility', 16]], (71,): [['tt.divisibility', 16]], (72,): [['tt.divisibility', 16]], (73,): [['tt.divisibility', 16]], (74,): [['tt.divisibility', 16]], (75,): [['tt.divisibility', 16]], (76,): [['tt.divisibility', 16]], (77,): [['tt.divisibility', 16]], (78,): [['tt.divisibility', 16]], (79,): [['tt.divisibility', 16]]}]},
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] inductor_meta={'grid_type': 'SequentialComboKernelGrid', 'combo_grid_meta': {'num_kernels': 10, 'min_blocks': 0, 'default_config': {'XBLOCK': 1024}, 'no_x_dim_0': False, 'xnumel_0': 1048576, 'no_x_dim_1': False, 'xnumel_1': 1048576, 'no_x_dim_2': False, 'xnumel_2': 1048576, 'no_x_dim_3': False, 'xnumel_3': 1048576, 'no_x_dim_4': False, 'xnumel_4': 1048576, 'no_x_dim_5': False, 'xnumel_5': 1048576, 'no_x_dim_6': False, 'xnumel_6': 1048576, 'no_x_dim_7': False, 'xnumel_7': 1048576, 'no_x_dim_8': False, 'xnumel_8': 1048576, 'no_x_dim_9': False, 'xnumel_9': 1048576}, 'kernel_name': 'triton_for_fused_0', 'mutated_arg_names': ['in_ptr1', 'in_ptr11', 'in_ptr12', 'in_ptr13', 'in_ptr16', 'in_ptr17', 'in_ptr18', 'in_ptr2', 'in_ptr21', 'in_ptr22', 'in_ptr23', 'in_ptr26', 'in_ptr27', 'in_ptr28', 'in_ptr3', 'in_ptr31', 'in_ptr32', 'in_ptr33', 'in_ptr36', 'in_ptr37', 'in_ptr38', 'in_ptr41', 'in_ptr42', 'in_ptr43', 'in_ptr46', 'in_ptr47', 'in_ptr48', 'in_ptr6', 'in_ptr7', 'in_ptr8', 'out_ptr15', 'out_ptr16', 'out_ptr17', 'out_ptr24', 'out_ptr25', 'out_ptr26', 'out_ptr33', 'out_ptr34', 'out_ptr35', 'out_ptr42', 'out_ptr43', 'out_ptr44', 'out_ptr51', 'out_ptr52', 'out_ptr53', 'out_ptr6', 'out_ptr60', 'out_ptr61', 'out_ptr62', 'out_ptr69', 'out_ptr7', 'out_ptr70', 'out_ptr71', 'out_ptr78', 'out_ptr79', 'out_ptr8', 'out_ptr80', 'out_ptr87', 'out_ptr88', 'out_ptr89'], 'backend_hash': 'DCE829F8EA2D8401907263D56662CBA64A0BC072B5D02C2B3A972BDE297C48CF', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] )
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] @triton.jit
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] def triton_for_fused_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33, in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40, in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47, in_ptr48, in_ptr49, out_ptr6, out_ptr7, out_ptr8, out_ptr15, out_ptr16, out_ptr17, out_ptr24, out_ptr25, out_ptr26, out_ptr33, out_ptr34, out_ptr35, out_ptr42, out_ptr43, out_ptr44, out_ptr51, out_ptr52, out_ptr53, out_ptr60, out_ptr61, out_ptr62, out_ptr69, out_ptr70, out_ptr71, out_ptr78, out_ptr79, out_ptr80, out_ptr87, out_ptr88, out_ptr89):
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid = tl.program_id(0)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] XBLOCK: tl.constexpr = 1024
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_0 = tl.cdiv(1048576, XBLOCK)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_1 = num_xblocks_0 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_2 = num_xblocks_1 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_3 = num_xblocks_2 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_4 = num_xblocks_3 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_5 = num_xblocks_4 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_6 = num_xblocks_5 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_7 = num_xblocks_6 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_8 = num_xblocks_7 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_9 = num_xblocks_8 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] if pid < num_xblocks_0:
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] x0 = xindex
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp5 = tl.load(in_ptr0 + (x0), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp6 = tl.load(in_ptr1 + (x0), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp11 = tl.load(in_ptr2 + (x0), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp18 = tl.load(in_ptr3 + (x0), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp20 = in_ptr4
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp0 = 0.09999999999999998
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp1 = 0.5
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp2 = tmp0 >= tmp1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp3 = -0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp4 = tl.where(tmp2, tmp3, tmp0)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp7 = tmp5 - tmp6
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp8 = tmp4 * tmp7
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp9 = tl.where(tmp2, tmp5, tmp6)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp10 = tmp8 + tmp9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp12 = 0.999
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp13 = tmp11 * tmp12
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp14 = 0.0010000000000000009
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp15 = tmp5 * tmp14
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp16 = tmp15 * tmp5
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp17 = tmp13 + tmp16
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp19 = libdevice.sqrt(tmp17)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp21 = 1.0
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp22 = tmp20 + tmp21
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp23 = libdevice.pow(tmp12, tmp22)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp24 = tmp21 - tmp23
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp25 = libdevice.sqrt(tmp24)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp26 = 0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp27 = libdevice.pow(tmp26, tmp22)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp28 = tmp21 - tmp27
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp29 = tl.full([1], 1, tl.int32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp30 = (tmp29 / tmp28)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp31 = 0.001
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp32 = tmp30 * tmp31
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp33 = -tmp32
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp34 = tmp25 * tmp33
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp35 = (tmp19 / tmp34)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp36 = (tmp29 / tmp33)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp37 = 1e-08
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp38 = tmp36 * tmp37
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp39 = tmp35 + tmp38
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp40 = (tmp10 / tmp39)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp41 = tmp18 + tmp40
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr6 + (x0), tmp41, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr7 + (x0), tmp10, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr8 + (x0), tmp17, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_1:
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_0
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] x1 = xindex
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp47 = tl.load(in_ptr5 + (x1), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp48 = tl.load(in_ptr6 + (x1), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp53 = tl.load(in_ptr7 + (x1), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp60 = tl.load(in_ptr8 + (x1), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp62 = in_ptr9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp42 = 0.09999999999999998
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp43 = 0.5
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp44 = tmp42 >= tmp43
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp45 = -0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp46 = tl.where(tmp44, tmp45, tmp42)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp49 = tmp47 - tmp48
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp50 = tmp46 * tmp49
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp51 = tl.where(tmp44, tmp47, tmp48)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp52 = tmp50 + tmp51
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp54 = 0.999
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp55 = tmp53 * tmp54
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp56 = 0.0010000000000000009
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp57 = tmp47 * tmp56
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp58 = tmp57 * tmp47
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp59 = tmp55 + tmp58
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp61 = libdevice.sqrt(tmp59)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp63 = 1.0
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp64 = tmp62 + tmp63
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp65 = libdevice.pow(tmp54, tmp64)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp66 = tmp63 - tmp65
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp67 = libdevice.sqrt(tmp66)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp68 = 0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp69 = libdevice.pow(tmp68, tmp64)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp70 = tmp63 - tmp69
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp71 = tl.full([1], 1, tl.int32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp72 = (tmp71 / tmp70)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp73 = 0.001
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp74 = tmp72 * tmp73
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp75 = -tmp74
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp76 = tmp67 * tmp75
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp77 = (tmp61 / tmp76)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp78 = (tmp71 / tmp75)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp79 = 1e-08
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp80 = tmp78 * tmp79
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp81 = tmp77 + tmp80
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp82 = (tmp52 / tmp81)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp83 = tmp60 + tmp82
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr15 + (x1), tmp83, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr16 + (x1), tmp52, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr17 + (x1), tmp59, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_2:
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] x2 = xindex
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp89 = tl.load(in_ptr10 + (x2), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp90 = tl.load(in_ptr11 + (x2), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp95 = tl.load(in_ptr12 + (x2), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp102 = tl.load(in_ptr13 + (x2), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp104 = in_ptr14
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp84 = 0.09999999999999998
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp85 = 0.5
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp86 = tmp84 >= tmp85
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp87 = -0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp88 = tl.where(tmp86, tmp87, tmp84)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp91 = tmp89 - tmp90
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp92 = tmp88 * tmp91
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp93 = tl.where(tmp86, tmp89, tmp90)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp94 = tmp92 + tmp93
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp96 = 0.999
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp97 = tmp95 * tmp96
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp98 = 0.0010000000000000009
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp99 = tmp89 * tmp98
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp100 = tmp99 * tmp89
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp101 = tmp97 + tmp100
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp103 = libdevice.sqrt(tmp101)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp105 = 1.0
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp106 = tmp104 + tmp105
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp107 = libdevice.pow(tmp96, tmp106)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp108 = tmp105 - tmp107
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp109 = libdevice.sqrt(tmp108)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp110 = 0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp111 = libdevice.pow(tmp110, tmp106)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp112 = tmp105 - tmp111
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp113 = tl.full([1], 1, tl.int32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp114 = (tmp113 / tmp112)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp115 = 0.001
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp116 = tmp114 * tmp115
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp117 = -tmp116
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp118 = tmp109 * tmp117
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp119 = (tmp103 / tmp118)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp120 = (tmp113 / tmp117)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp121 = 1e-08
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp122 = tmp120 * tmp121
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp123 = tmp119 + tmp122
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp124 = (tmp94 / tmp123)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp125 = tmp102 + tmp124
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr24 + (x2), tmp125, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr25 + (x2), tmp94, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr26 + (x2), tmp101, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_3:
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_2
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] x3 = xindex
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp131 = tl.load(in_ptr15 + (x3), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp132 = tl.load(in_ptr16 + (x3), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp137 = tl.load(in_ptr17 + (x3), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp144 = tl.load(in_ptr18 + (x3), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp146 = in_ptr19
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp126 = 0.09999999999999998
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp127 = 0.5
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp128 = tmp126 >= tmp127
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp129 = -0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp130 = tl.where(tmp128, tmp129, tmp126)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp133 = tmp131 - tmp132
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp134 = tmp130 * tmp133
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp135 = tl.where(tmp128, tmp131, tmp132)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp136 = tmp134 + tmp135
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp138 = 0.999
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp139 = tmp137 * tmp138
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp140 = 0.0010000000000000009
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp141 = tmp131 * tmp140
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp142 = tmp141 * tmp131
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp143 = tmp139 + tmp142
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp145 = libdevice.sqrt(tmp143)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp147 = 1.0
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp148 = tmp146 + tmp147
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp149 = libdevice.pow(tmp138, tmp148)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp150 = tmp147 - tmp149
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp151 = libdevice.sqrt(tmp150)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp152 = 0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp153 = libdevice.pow(tmp152, tmp148)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp154 = tmp147 - tmp153
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp155 = tl.full([1], 1, tl.int32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp156 = (tmp155 / tmp154)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp157 = 0.001
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp158 = tmp156 * tmp157
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp159 = -tmp158
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp160 = tmp151 * tmp159
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp161 = (tmp145 / tmp160)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp162 = (tmp155 / tmp159)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp163 = 1e-08
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp164 = tmp162 * tmp163
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp165 = tmp161 + tmp164
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp166 = (tmp136 / tmp165)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp167 = tmp144 + tmp166
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr33 + (x3), tmp167, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr34 + (x3), tmp136, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr35 + (x3), tmp143, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_4:
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_3
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] x4 = xindex
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp173 = tl.load(in_ptr20 + (x4), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp174 = tl.load(in_ptr21 + (x4), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp179 = tl.load(in_ptr22 + (x4), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp186 = tl.load(in_ptr23 + (x4), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp188 = in_ptr24
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp168 = 0.09999999999999998
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp169 = 0.5
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp170 = tmp168 >= tmp169
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp171 = -0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp172 = tl.where(tmp170, tmp171, tmp168)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp175 = tmp173 - tmp174
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp176 = tmp172 * tmp175
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp177 = tl.where(tmp170, tmp173, tmp174)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp178 = tmp176 + tmp177
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp180 = 0.999
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp181 = tmp179 * tmp180
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp182 = 0.0010000000000000009
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp183 = tmp173 * tmp182
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp184 = tmp183 * tmp173
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp185 = tmp181 + tmp184
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp187 = libdevice.sqrt(tmp185)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp189 = 1.0
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp190 = tmp188 + tmp189
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp191 = libdevice.pow(tmp180, tmp190)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp192 = tmp189 - tmp191
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp193 = libdevice.sqrt(tmp192)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp194 = 0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp195 = libdevice.pow(tmp194, tmp190)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp196 = tmp189 - tmp195
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp197 = tl.full([1], 1, tl.int32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp198 = (tmp197 / tmp196)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp199 = 0.001
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp200 = tmp198 * tmp199
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp201 = -tmp200
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp202 = tmp193 * tmp201
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp203 = (tmp187 / tmp202)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp204 = (tmp197 / tmp201)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp205 = 1e-08
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp206 = tmp204 * tmp205
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp207 = tmp203 + tmp206
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp208 = (tmp178 / tmp207)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp209 = tmp186 + tmp208
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr42 + (x4), tmp209, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr43 + (x4), tmp178, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr44 + (x4), tmp185, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_5:
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_4
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] x5 = xindex
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp215 = tl.load(in_ptr25 + (x5), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp216 = tl.load(in_ptr26 + (x5), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp221 = tl.load(in_ptr27 + (x5), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp228 = tl.load(in_ptr28 + (x5), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp230 = in_ptr29
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp210 = 0.09999999999999998
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp211 = 0.5
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp212 = tmp210 >= tmp211
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp213 = -0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp214 = tl.where(tmp212, tmp213, tmp210)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp217 = tmp215 - tmp216
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp218 = tmp214 * tmp217
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp219 = tl.where(tmp212, tmp215, tmp216)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp220 = tmp218 + tmp219
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp222 = 0.999
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp223 = tmp221 * tmp222
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp224 = 0.0010000000000000009
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp225 = tmp215 * tmp224
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp226 = tmp225 * tmp215
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp227 = tmp223 + tmp226
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp229 = libdevice.sqrt(tmp227)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp231 = 1.0
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp232 = tmp230 + tmp231
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp233 = libdevice.pow(tmp222, tmp232)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp234 = tmp231 - tmp233
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp235 = libdevice.sqrt(tmp234)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp236 = 0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp237 = libdevice.pow(tmp236, tmp232)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp238 = tmp231 - tmp237
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp239 = tl.full([1], 1, tl.int32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp240 = (tmp239 / tmp238)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp241 = 0.001
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp242 = tmp240 * tmp241
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp243 = -tmp242
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp244 = tmp235 * tmp243
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp245 = (tmp229 / tmp244)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp246 = (tmp239 / tmp243)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp247 = 1e-08
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp248 = tmp246 * tmp247
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp249 = tmp245 + tmp248
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp250 = (tmp220 / tmp249)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp251 = tmp228 + tmp250
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr51 + (x5), tmp251, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr52 + (x5), tmp220, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr53 + (x5), tmp227, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_6:
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_5
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] x6 = xindex
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp257 = tl.load(in_ptr30 + (x6), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp258 = tl.load(in_ptr31 + (x6), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp263 = tl.load(in_ptr32 + (x6), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp270 = tl.load(in_ptr33 + (x6), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp272 = in_ptr34
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp252 = 0.09999999999999998
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp253 = 0.5
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp254 = tmp252 >= tmp253
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp255 = -0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp256 = tl.where(tmp254, tmp255, tmp252)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp259 = tmp257 - tmp258
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp260 = tmp256 * tmp259
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp261 = tl.where(tmp254, tmp257, tmp258)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp262 = tmp260 + tmp261
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp264 = 0.999
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp265 = tmp263 * tmp264
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp266 = 0.0010000000000000009
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp267 = tmp257 * tmp266
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp268 = tmp267 * tmp257
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp269 = tmp265 + tmp268
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp271 = libdevice.sqrt(tmp269)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp273 = 1.0
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp274 = tmp272 + tmp273
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp275 = libdevice.pow(tmp264, tmp274)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp276 = tmp273 - tmp275
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp277 = libdevice.sqrt(tmp276)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp278 = 0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp279 = libdevice.pow(tmp278, tmp274)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp280 = tmp273 - tmp279
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp281 = tl.full([1], 1, tl.int32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp282 = (tmp281 / tmp280)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp283 = 0.001
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp284 = tmp282 * tmp283
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp285 = -tmp284
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp286 = tmp277 * tmp285
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp287 = (tmp271 / tmp286)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp288 = (tmp281 / tmp285)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp289 = 1e-08
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp290 = tmp288 * tmp289
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp291 = tmp287 + tmp290
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp292 = (tmp262 / tmp291)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp293 = tmp270 + tmp292
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr60 + (x6), tmp293, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr61 + (x6), tmp262, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr62 + (x6), tmp269, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_7:
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_6
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] x7 = xindex
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp299 = tl.load(in_ptr35 + (x7), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp300 = tl.load(in_ptr36 + (x7), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp305 = tl.load(in_ptr37 + (x7), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp312 = tl.load(in_ptr38 + (x7), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp314 = in_ptr39
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp294 = 0.09999999999999998
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp295 = 0.5
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp296 = tmp294 >= tmp295
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp297 = -0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp298 = tl.where(tmp296, tmp297, tmp294)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp301 = tmp299 - tmp300
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp302 = tmp298 * tmp301
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp303 = tl.where(tmp296, tmp299, tmp300)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp304 = tmp302 + tmp303
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp306 = 0.999
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp307 = tmp305 * tmp306
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp308 = 0.0010000000000000009
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp309 = tmp299 * tmp308
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp310 = tmp309 * tmp299
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp311 = tmp307 + tmp310
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp313 = libdevice.sqrt(tmp311)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp315 = 1.0
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp316 = tmp314 + tmp315
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp317 = libdevice.pow(tmp306, tmp316)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp318 = tmp315 - tmp317
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp319 = libdevice.sqrt(tmp318)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp320 = 0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp321 = libdevice.pow(tmp320, tmp316)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp322 = tmp315 - tmp321
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp323 = tl.full([1], 1, tl.int32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp324 = (tmp323 / tmp322)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp325 = 0.001
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp326 = tmp324 * tmp325
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp327 = -tmp326
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp328 = tmp319 * tmp327
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp329 = (tmp313 / tmp328)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp330 = (tmp323 / tmp327)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp331 = 1e-08
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp332 = tmp330 * tmp331
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp333 = tmp329 + tmp332
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp334 = (tmp304 / tmp333)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp335 = tmp312 + tmp334
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr69 + (x7), tmp335, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr70 + (x7), tmp304, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr71 + (x7), tmp311, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_8:
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_7
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] x8 = xindex
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp341 = tl.load(in_ptr40 + (x8), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp342 = tl.load(in_ptr41 + (x8), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp347 = tl.load(in_ptr42 + (x8), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp354 = tl.load(in_ptr43 + (x8), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp356 = in_ptr44
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp336 = 0.09999999999999998
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp337 = 0.5
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp338 = tmp336 >= tmp337
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp339 = -0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp340 = tl.where(tmp338, tmp339, tmp336)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp343 = tmp341 - tmp342
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp344 = tmp340 * tmp343
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp345 = tl.where(tmp338, tmp341, tmp342)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp346 = tmp344 + tmp345
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp348 = 0.999
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp349 = tmp347 * tmp348
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp350 = 0.0010000000000000009
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp351 = tmp341 * tmp350
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp352 = tmp351 * tmp341
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp353 = tmp349 + tmp352
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp355 = libdevice.sqrt(tmp353)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp357 = 1.0
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp358 = tmp356 + tmp357
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp359 = libdevice.pow(tmp348, tmp358)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp360 = tmp357 - tmp359
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp361 = libdevice.sqrt(tmp360)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp362 = 0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp363 = libdevice.pow(tmp362, tmp358)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp364 = tmp357 - tmp363
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp365 = tl.full([1], 1, tl.int32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp366 = (tmp365 / tmp364)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp367 = 0.001
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp368 = tmp366 * tmp367
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp369 = -tmp368
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp370 = tmp361 * tmp369
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp371 = (tmp355 / tmp370)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp372 = (tmp365 / tmp369)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp373 = 1e-08
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp374 = tmp372 * tmp373
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp375 = tmp371 + tmp374
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp376 = (tmp346 / tmp375)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp377 = tmp354 + tmp376
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr78 + (x8), tmp377, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr79 + (x8), tmp346, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr80 + (x8), tmp353, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_9:
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_8
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] x9 = xindex
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp383 = tl.load(in_ptr45 + (x9), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp384 = tl.load(in_ptr46 + (x9), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp389 = tl.load(in_ptr47 + (x9), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp396 = tl.load(in_ptr48 + (x9), None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp398 = in_ptr49
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp378 = 0.09999999999999998
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp379 = 0.5
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp380 = tmp378 >= tmp379
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp381 = -0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp382 = tl.where(tmp380, tmp381, tmp378)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp385 = tmp383 - tmp384
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp386 = tmp382 * tmp385
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp387 = tl.where(tmp380, tmp383, tmp384)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp388 = tmp386 + tmp387
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp390 = 0.999
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp391 = tmp389 * tmp390
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp392 = 0.0010000000000000009
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp393 = tmp383 * tmp392
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp394 = tmp393 * tmp383
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp395 = tmp391 + tmp394
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp397 = libdevice.sqrt(tmp395)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp399 = 1.0
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp400 = tmp398 + tmp399
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp401 = libdevice.pow(tmp390, tmp400)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp402 = tmp399 - tmp401
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp403 = libdevice.sqrt(tmp402)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp404 = 0.9
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp405 = libdevice.pow(tmp404, tmp400)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp406 = tmp399 - tmp405
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp407 = tl.full([1], 1, tl.int32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp408 = (tmp407 / tmp406)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp409 = 0.001
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp410 = tmp408 * tmp409
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp411 = -tmp410
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp412 = tmp403 * tmp411
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp413 = (tmp397 / tmp412)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp414 = (tmp407 / tmp411)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp415 = 1e-08
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp416 = tmp414 * tmp415
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp417 = tmp413 + tmp416
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp418 = (tmp388 / tmp417)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp419 = tmp396 + tmp418
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr87 + (x9), tmp419, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr88 + (x9), tmp388, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr89 + (x9), tmp395, None)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] else:
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] pass
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] ''', device_str='cuda')
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] cpp_fused__foreach_copy_1 = async_compile.cpp_pybinding(['const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*'], '''
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] #include "/tmp/torchinductor_ci-user/pi/cpicxudqmdsjh5cm4klbtbrvy2cxwr7whxl3md2zzdjdf3orvfdf.h"
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] extern "C" void kernel(const float* in_ptr0,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr1,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr2,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr3,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr4,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr5,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr6,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr7,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr8,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr9,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr1,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr3,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr5,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr7,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr9,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr11,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr13,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr15,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr17,
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr19)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr0[static_cast<int64_t>(0L)];
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr1[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr1[static_cast<int64_t>(0L)];
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr3[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr2[static_cast<int64_t>(0L)];
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr5[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr3[static_cast<int64_t>(0L)];
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr7[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr4[static_cast<int64_t>(0L)];
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr9[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr5[static_cast<int64_t>(0L)];
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr11[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr6[static_cast<int64_t>(0L)];
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr13[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr7[static_cast<int64_t>(0L)];
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr15[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr8[static_cast<int64_t>(0L)];
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr17[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr9[static_cast<int64_t>(0L)];
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr19[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] ''')
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] async_compile.wait(globals())
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del async_compile
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] def call(args):
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1, arg15_1, arg16_1, arg17_1, arg18_1, arg19_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg30_1, arg31_1, arg32_1, arg33_1, arg34_1, arg35_1, arg36_1, arg37_1, arg38_1, arg39_1, arg40_1, arg41_1, arg42_1, arg43_1, arg44_1, arg45_1, arg46_1, arg47_1, arg48_1, arg49_1 = args
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] args.clear()
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg0_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg1_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg2_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg3_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg4_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg5_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg6_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg7_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg8_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg9_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg10_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg11_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg12_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg13_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg14_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg15_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg16_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg17_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg18_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg19_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg20_1, (), ())
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg21_1, (), ())
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg22_1, (), ())
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg23_1, (), ())
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg24_1, (), ())
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg25_1, (), ())
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg26_1, (), ())
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg27_1, (), ())
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg28_1, (), ())
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg29_1, (), ())
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg30_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg31_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg32_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg33_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg34_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg35_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg36_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg37_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg38_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg39_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg40_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg41_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg42_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg43_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg44_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg45_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg46_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg47_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg48_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg49_1, (1024, 1024), (1024, 1))
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] with torch.cuda._DeviceGuard(0):
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] torch.cuda.set_device(0)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] # Unsorted Source Nodes: [], Original ATen: []
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] stream0 = get_raw_stream(0)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] triton_for_fused_0.run(arg1_1, arg30_1, arg40_1, arg0_1, arg20_1.item(), arg3_1, arg31_1, arg41_1, arg2_1, arg21_1.item(), arg5_1, arg32_1, arg42_1, arg4_1, arg22_1.item(), arg7_1, arg33_1, arg43_1, arg6_1, arg23_1.item(), arg9_1, arg34_1, arg44_1, arg8_1, arg24_1.item(), arg11_1, arg35_1, arg45_1, arg10_1, arg25_1.item(), arg13_1, arg36_1, arg46_1, arg12_1, arg26_1.item(), arg15_1, arg37_1, arg47_1, arg14_1, arg27_1.item(), arg17_1, arg38_1, arg48_1, arg16_1, arg28_1.item(), arg19_1, arg39_1, arg49_1, arg18_1, arg29_1.item(), arg0_1, arg30_1, arg40_1, arg2_1, arg31_1, arg41_1, arg4_1, arg32_1, arg42_1, arg6_1, arg33_1, arg43_1, arg8_1, arg34_1, arg44_1, arg10_1, arg35_1, arg45_1, arg12_1, arg36_1, arg46_1, arg14_1, arg37_1, arg47_1, arg16_1, arg38_1, arg48_1, arg18_1, arg39_1, arg49_1, stream=stream0)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg0_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg10_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg11_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg12_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg13_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg14_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg15_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg16_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg17_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg18_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg19_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg1_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg2_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg30_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg31_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg32_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg33_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg34_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg35_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg36_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg37_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg38_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg39_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg3_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg40_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg41_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg42_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg43_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg44_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg45_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg46_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg47_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg48_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg49_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg4_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg5_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg6_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg7_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg8_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg9_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] cpp_fused__foreach_copy_1(arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg20_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg21_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg22_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg23_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg24_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg25_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg26_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg27_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg28_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg29_1
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] return ()
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] def benchmark_compiled_module(times=10, repeat=10):
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._dynamo.testing import rand_strided
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.utils import print_performance
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg0_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg1_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg2_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg3_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg4_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg5_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg6_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg7_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg8_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg9_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg10_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg11_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg12_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg13_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg14_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg15_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg16_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg17_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg18_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg19_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg20_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg21_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg22_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg23_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg24_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg25_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg26_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg27_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg28_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg29_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg30_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg31_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg32_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg33_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg34_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg35_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg36_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg37_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg38_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg39_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg40_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg41_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg42_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg43_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg44_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg45_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg46_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg47_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg48_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg49_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1, arg15_1, arg16_1, arg17_1, arg18_1, arg19_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg30_1, arg31_1, arg32_1, arg33_1, arg34_1, arg35_1, arg36_1, arg37_1, arg38_1, arg39_1, arg40_1, arg41_1, arg42_1, arg43_1, arg44_1, arg45_1, arg46_1, arg47_1, arg48_1, arg49_1])
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] return print_performance(fn, times=times, repeat=repeat)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] if __name__ == "__main__":
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.wrapper_benchmark import compiled_module_main
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code] compiled_module_main('None', benchmark_compiled_module)
V0423 16:42:27.325000 660 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0423 16:42:27.376000 660 torch/_inductor/graph.py:2115] [0/0] [__output_code] Output code written to: /tmp/torchinductor_ci-user/ww/cwwrhtt6vsohtl5bf2vkxgo6guitwjo7y7a36yfdb4u3eafamats.py
I0423 16:42:28.901000 660 torch/_inductor/graph.py:2149] [0/0] [__output_code] Output code written to: /tmp/torchinductor_ci-user/ww/cwwrhtt6vsohtl5bf2vkxgo6guitwjo7y7a36yfdb4u3eafamats.py
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] Output code:
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] # AOT ID: ['1_inference']
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from ctypes import c_void_p, c_long, c_int
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] import torch
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] import math
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] import random
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] import os
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] import tempfile
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from math import inf, nan
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from cmath import nanj
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.hooks import run_intermediate_hooks
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.utils import maybe_profile
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.codegen.memory_planning import _align as align
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch import device, empty_strided
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.async_compile import AsyncCompile
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.select_algorithm import extern_kernels
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.codegen.multi_kernel import MultiKernelCall
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._C import _cuda_getCurrentRawStream as get_raw_stream
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] import triton
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] import triton.language as tl
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.runtime.triton_heuristics import start_graph, end_graph
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._C import _cuda_getCurrentRawStream as get_raw_stream
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] aten = torch.ops.aten
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] inductor_ops = torch.ops.inductor
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] _quantized = torch.ops._quantized
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride = torch._C._dynamo.guards.assert_size_stride
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] alloc_from_pool = torch.ops.inductor._alloc_from_pool
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] async_compile = AsyncCompile()
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] empty_strided_p2p = torch._C._distributed_c10d._SymmetricMemory.empty_strided_p2p
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] # kernel path: /tmp/torchinductor_ci-user/zj/czjmfxlolmpzwn2v3n3eizsgjh75uuu75c4js74axzhym4alua4n.py
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] # Unsorted Source Nodes: [], Original ATen: []
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] # Source node to ATen node mapping:
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] triton_for_fused_0 = async_compile.triton('triton_for_fused_0', '''
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] import triton
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] import triton.language as tl
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.runtime import triton_helpers, triton_heuristics
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, DeviceProperties
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] @triton_heuristics.foreach(
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_warps=8,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] triton_meta={'signature': {'in_ptr0': '*fp32', 'in_ptr1': '*fp32', 'in_ptr2': '*fp32', 'in_ptr3': '*fp32', 'in_ptr4': 'fp32', 'in_ptr5': '*fp32', 'in_ptr6': '*fp32', 'in_ptr7': '*fp32', 'in_ptr8': '*fp32', 'in_ptr9': 'fp32', 'in_ptr10': '*fp32', 'in_ptr11': '*fp32', 'in_ptr12': '*fp32', 'in_ptr13': '*fp32', 'in_ptr14': 'fp32', 'in_ptr15': '*fp32', 'in_ptr16': '*fp32', 'in_ptr17': '*fp32', 'in_ptr18': '*fp32', 'in_ptr19': 'fp32', 'in_ptr20': '*fp32', 'in_ptr21': '*fp32', 'in_ptr22': '*fp32', 'in_ptr23': '*fp32', 'in_ptr24': 'fp32', 'in_ptr25': '*fp32', 'in_ptr26': '*fp32', 'in_ptr27': '*fp32', 'in_ptr28': '*fp32', 'in_ptr29': 'fp32', 'in_ptr30': '*fp32', 'in_ptr31': '*fp32', 'in_ptr32': '*fp32', 'in_ptr33': '*fp32', 'in_ptr34': 'fp32', 'in_ptr35': '*fp32', 'in_ptr36': '*fp32', 'in_ptr37': '*fp32', 'in_ptr38': '*fp32', 'in_ptr39': 'fp32', 'in_ptr40': '*fp32', 'in_ptr41': '*fp32', 'in_ptr42': '*fp32', 'in_ptr43': '*fp32', 'in_ptr44': 'fp32', 'in_ptr45': '*fp32', 'in_ptr46': '*fp32', 'in_ptr47': '*fp32', 'in_ptr48': '*fp32', 'in_ptr49': 'fp32', 'out_ptr6': '*fp32', 'out_ptr7': '*fp32', 'out_ptr8': '*fp32', 'out_ptr15': '*fp32', 'out_ptr16': '*fp32', 'out_ptr17': '*fp32', 'out_ptr24': '*fp32', 'out_ptr25': '*fp32', 'out_ptr26': '*fp32', 'out_ptr33': '*fp32', 'out_ptr34': '*fp32', 'out_ptr35': '*fp32', 'out_ptr42': '*fp32', 'out_ptr43': '*fp32', 'out_ptr44': '*fp32', 'out_ptr51': '*fp32', 'out_ptr52': '*fp32', 'out_ptr53': '*fp32', 'out_ptr60': '*fp32', 'out_ptr61': '*fp32', 'out_ptr62': '*fp32', 'out_ptr69': '*fp32', 'out_ptr70': '*fp32', 'out_ptr71': '*fp32', 'out_ptr78': '*fp32', 'out_ptr79': '*fp32', 'out_ptr80': '*fp32', 'out_ptr87': '*fp32', 'out_ptr88': '*fp32', 'out_ptr89': '*fp32'}, 'device': DeviceProperties(type='cuda', index=0, multi_processor_count=80, cc=86, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, warp_size=32), 'constants': {}, 'configs': [{(0,): [['tt.divisibility', 16]], (1,): [['tt.divisibility', 16]], (2,): [['tt.divisibility', 16]], (3,): [['tt.divisibility', 16]], (5,): [['tt.divisibility', 16]], (6,): [['tt.divisibility', 16]], (7,): [['tt.divisibility', 16]], (8,): [['tt.divisibility', 16]], (10,): [['tt.divisibility', 16]], (11,): [['tt.divisibility', 16]], (12,): [['tt.divisibility', 16]], (13,): [['tt.divisibility', 16]], (15,): [['tt.divisibility', 16]], (16,): [['tt.divisibility', 16]], (17,): [['tt.divisibility', 16]], (18,): [['tt.divisibility', 16]], (20,): [['tt.divisibility', 16]], (21,): [['tt.divisibility', 16]], (22,): [['tt.divisibility', 16]], (23,): [['tt.divisibility', 16]], (25,): [['tt.divisibility', 16]], (26,): [['tt.divisibility', 16]], (27,): [['tt.divisibility', 16]], (28,): [['tt.divisibility', 16]], (30,): [['tt.divisibility', 16]], (31,): [['tt.divisibility', 16]], (32,): [['tt.divisibility', 16]], (33,): [['tt.divisibility', 16]], (35,): [['tt.divisibility', 16]], (36,): [['tt.divisibility', 16]], (37,): [['tt.divisibility', 16]], (38,): [['tt.divisibility', 16]], (40,): [['tt.divisibility', 16]], (41,): [['tt.divisibility', 16]], (42,): [['tt.divisibility', 16]], (43,): [['tt.divisibility', 16]], (45,): [['tt.divisibility', 16]], (46,): [['tt.divisibility', 16]], (47,): [['tt.divisibility', 16]], (48,): [['tt.divisibility', 16]], (50,): [['tt.divisibility', 16]], (51,): [['tt.divisibility', 16]], (52,): [['tt.divisibility', 16]], (53,): [['tt.divisibility', 16]], (54,): [['tt.divisibility', 16]], (55,): [['tt.divisibility', 16]], (56,): [['tt.divisibility', 16]], (57,): [['tt.divisibility', 16]], (58,): [['tt.divisibility', 16]], (59,): [['tt.divisibility', 16]], (60,): [['tt.divisibility', 16]], (61,): [['tt.divisibility', 16]], (62,): [['tt.divisibility', 16]], (63,): [['tt.divisibility', 16]], (64,): [['tt.divisibility', 16]], (65,): [['tt.divisibility', 16]], (66,): [['tt.divisibility', 16]], (67,): [['tt.divisibility', 16]], (68,): [['tt.divisibility', 16]], (69,): [['tt.divisibility', 16]], (70,): [['tt.divisibility', 16]], (71,): [['tt.divisibility', 16]], (72,): [['tt.divisibility', 16]], (73,): [['tt.divisibility', 16]], (74,): [['tt.divisibility', 16]], (75,): [['tt.divisibility', 16]], (76,): [['tt.divisibility', 16]], (77,): [['tt.divisibility', 16]], (78,): [['tt.divisibility', 16]], (79,): [['tt.divisibility', 16]]}]},
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] inductor_meta={'grid_type': 'SequentialComboKernelGrid', 'combo_grid_meta': {'num_kernels': 10, 'min_blocks': 0, 'default_config': {'XBLOCK': 1024}, 'no_x_dim_0': False, 'xnumel_0': 1048576, 'no_x_dim_1': False, 'xnumel_1': 1048576, 'no_x_dim_2': False, 'xnumel_2': 1048576, 'no_x_dim_3': False, 'xnumel_3': 1048576, 'no_x_dim_4': False, 'xnumel_4': 1048576, 'no_x_dim_5': False, 'xnumel_5': 1048576, 'no_x_dim_6': False, 'xnumel_6': 1048576, 'no_x_dim_7': False, 'xnumel_7': 1048576, 'no_x_dim_8': False, 'xnumel_8': 1048576, 'no_x_dim_9': False, 'xnumel_9': 1048576}, 'kernel_name': 'triton_for_fused_0', 'mutated_arg_names': ['in_ptr1', 'in_ptr11', 'in_ptr12', 'in_ptr13', 'in_ptr16', 'in_ptr17', 'in_ptr18', 'in_ptr2', 'in_ptr21', 'in_ptr22', 'in_ptr23', 'in_ptr26', 'in_ptr27', 'in_ptr28', 'in_ptr3', 'in_ptr31', 'in_ptr32', 'in_ptr33', 'in_ptr36', 'in_ptr37', 'in_ptr38', 'in_ptr41', 'in_ptr42', 'in_ptr43', 'in_ptr46', 'in_ptr47', 'in_ptr48', 'in_ptr6', 'in_ptr7', 'in_ptr8', 'out_ptr15', 'out_ptr16', 'out_ptr17', 'out_ptr24', 'out_ptr25', 'out_ptr26', 'out_ptr33', 'out_ptr34', 'out_ptr35', 'out_ptr42', 'out_ptr43', 'out_ptr44', 'out_ptr51', 'out_ptr52', 'out_ptr53', 'out_ptr6', 'out_ptr60', 'out_ptr61', 'out_ptr62', 'out_ptr69', 'out_ptr7', 'out_ptr70', 'out_ptr71', 'out_ptr78', 'out_ptr79', 'out_ptr8', 'out_ptr80', 'out_ptr87', 'out_ptr88', 'out_ptr89'], 'backend_hash': 'DCE829F8EA2D8401907263D56662CBA64A0BC072B5D02C2B3A972BDE297C48CF', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] )
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] @triton.jit
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] def triton_for_fused_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33, in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40, in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47, in_ptr48, in_ptr49, out_ptr6, out_ptr7, out_ptr8, out_ptr15, out_ptr16, out_ptr17, out_ptr24, out_ptr25, out_ptr26, out_ptr33, out_ptr34, out_ptr35, out_ptr42, out_ptr43, out_ptr44, out_ptr51, out_ptr52, out_ptr53, out_ptr60, out_ptr61, out_ptr62, out_ptr69, out_ptr70, out_ptr71, out_ptr78, out_ptr79, out_ptr80, out_ptr87, out_ptr88, out_ptr89):
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid = tl.program_id(0)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] XBLOCK: tl.constexpr = 1024
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_0 = tl.cdiv(1048576, XBLOCK)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_1 = num_xblocks_0 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_2 = num_xblocks_1 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_3 = num_xblocks_2 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_4 = num_xblocks_3 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_5 = num_xblocks_4 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_6 = num_xblocks_5 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_7 = num_xblocks_6 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_8 = num_xblocks_7 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_9 = num_xblocks_8 + tl.cdiv(1048576, XBLOCK)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] if pid < num_xblocks_0:
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] x0 = xindex
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp5 = tl.load(in_ptr0 + (x0), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp6 = tl.load(in_ptr1 + (x0), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp11 = tl.load(in_ptr2 + (x0), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp18 = tl.load(in_ptr3 + (x0), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp20 = in_ptr4
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp0 = 0.09999999999999998
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp1 = 0.5
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp2 = tmp0 >= tmp1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp3 = -0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp4 = tl.where(tmp2, tmp3, tmp0)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp7 = tmp5 - tmp6
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp8 = tmp4 * tmp7
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp9 = tl.where(tmp2, tmp5, tmp6)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp10 = tmp8 + tmp9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp12 = 0.999
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp13 = tmp11 * tmp12
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp14 = 0.0010000000000000009
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp15 = tmp5 * tmp14
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp16 = tmp15 * tmp5
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp17 = tmp13 + tmp16
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp19 = libdevice.sqrt(tmp17)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp21 = 1.0
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp22 = tmp20 + tmp21
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp23 = libdevice.pow(tmp12, tmp22)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp24 = tmp21 - tmp23
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp25 = libdevice.sqrt(tmp24)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp26 = 0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp27 = libdevice.pow(tmp26, tmp22)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp28 = tmp21 - tmp27
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp29 = tl.full([1], 1, tl.int32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp30 = (tmp29 / tmp28)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp31 = 0.001
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp32 = tmp30 * tmp31
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp33 = -tmp32
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp34 = tmp25 * tmp33
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp35 = (tmp19 / tmp34)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp36 = (tmp29 / tmp33)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp37 = 1e-08
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp38 = tmp36 * tmp37
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp39 = tmp35 + tmp38
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp40 = (tmp10 / tmp39)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp41 = tmp18 + tmp40
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr6 + (x0), tmp41, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr7 + (x0), tmp10, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr8 + (x0), tmp17, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_1:
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_0
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] x1 = xindex
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp47 = tl.load(in_ptr5 + (x1), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp48 = tl.load(in_ptr6 + (x1), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp53 = tl.load(in_ptr7 + (x1), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp60 = tl.load(in_ptr8 + (x1), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp62 = in_ptr9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp42 = 0.09999999999999998
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp43 = 0.5
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp44 = tmp42 >= tmp43
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp45 = -0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp46 = tl.where(tmp44, tmp45, tmp42)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp49 = tmp47 - tmp48
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp50 = tmp46 * tmp49
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp51 = tl.where(tmp44, tmp47, tmp48)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp52 = tmp50 + tmp51
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp54 = 0.999
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp55 = tmp53 * tmp54
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp56 = 0.0010000000000000009
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp57 = tmp47 * tmp56
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp58 = tmp57 * tmp47
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp59 = tmp55 + tmp58
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp61 = libdevice.sqrt(tmp59)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp63 = 1.0
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp64 = tmp62 + tmp63
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp65 = libdevice.pow(tmp54, tmp64)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp66 = tmp63 - tmp65
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp67 = libdevice.sqrt(tmp66)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp68 = 0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp69 = libdevice.pow(tmp68, tmp64)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp70 = tmp63 - tmp69
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp71 = tl.full([1], 1, tl.int32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp72 = (tmp71 / tmp70)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp73 = 0.001
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp74 = tmp72 * tmp73
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp75 = -tmp74
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp76 = tmp67 * tmp75
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp77 = (tmp61 / tmp76)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp78 = (tmp71 / tmp75)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp79 = 1e-08
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp80 = tmp78 * tmp79
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp81 = tmp77 + tmp80
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp82 = (tmp52 / tmp81)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp83 = tmp60 + tmp82
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr15 + (x1), tmp83, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr16 + (x1), tmp52, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr17 + (x1), tmp59, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_2:
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] x2 = xindex
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp89 = tl.load(in_ptr10 + (x2), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp90 = tl.load(in_ptr11 + (x2), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp95 = tl.load(in_ptr12 + (x2), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp102 = tl.load(in_ptr13 + (x2), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp104 = in_ptr14
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp84 = 0.09999999999999998
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp85 = 0.5
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp86 = tmp84 >= tmp85
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp87 = -0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp88 = tl.where(tmp86, tmp87, tmp84)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp91 = tmp89 - tmp90
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp92 = tmp88 * tmp91
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp93 = tl.where(tmp86, tmp89, tmp90)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp94 = tmp92 + tmp93
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp96 = 0.999
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp97 = tmp95 * tmp96
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp98 = 0.0010000000000000009
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp99 = tmp89 * tmp98
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp100 = tmp99 * tmp89
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp101 = tmp97 + tmp100
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp103 = libdevice.sqrt(tmp101)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp105 = 1.0
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp106 = tmp104 + tmp105
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp107 = libdevice.pow(tmp96, tmp106)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp108 = tmp105 - tmp107
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp109 = libdevice.sqrt(tmp108)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp110 = 0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp111 = libdevice.pow(tmp110, tmp106)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp112 = tmp105 - tmp111
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp113 = tl.full([1], 1, tl.int32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp114 = (tmp113 / tmp112)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp115 = 0.001
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp116 = tmp114 * tmp115
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp117 = -tmp116
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp118 = tmp109 * tmp117
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp119 = (tmp103 / tmp118)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp120 = (tmp113 / tmp117)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp121 = 1e-08
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp122 = tmp120 * tmp121
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp123 = tmp119 + tmp122
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp124 = (tmp94 / tmp123)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp125 = tmp102 + tmp124
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr24 + (x2), tmp125, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr25 + (x2), tmp94, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr26 + (x2), tmp101, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_3:
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_2
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] x3 = xindex
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp131 = tl.load(in_ptr15 + (x3), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp132 = tl.load(in_ptr16 + (x3), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp137 = tl.load(in_ptr17 + (x3), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp144 = tl.load(in_ptr18 + (x3), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp146 = in_ptr19
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp126 = 0.09999999999999998
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp127 = 0.5
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp128 = tmp126 >= tmp127
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp129 = -0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp130 = tl.where(tmp128, tmp129, tmp126)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp133 = tmp131 - tmp132
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp134 = tmp130 * tmp133
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp135 = tl.where(tmp128, tmp131, tmp132)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp136 = tmp134 + tmp135
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp138 = 0.999
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp139 = tmp137 * tmp138
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp140 = 0.0010000000000000009
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp141 = tmp131 * tmp140
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp142 = tmp141 * tmp131
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp143 = tmp139 + tmp142
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp145 = libdevice.sqrt(tmp143)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp147 = 1.0
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp148 = tmp146 + tmp147
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp149 = libdevice.pow(tmp138, tmp148)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp150 = tmp147 - tmp149
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp151 = libdevice.sqrt(tmp150)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp152 = 0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp153 = libdevice.pow(tmp152, tmp148)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp154 = tmp147 - tmp153
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp155 = tl.full([1], 1, tl.int32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp156 = (tmp155 / tmp154)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp157 = 0.001
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp158 = tmp156 * tmp157
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp159 = -tmp158
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp160 = tmp151 * tmp159
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp161 = (tmp145 / tmp160)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp162 = (tmp155 / tmp159)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp163 = 1e-08
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp164 = tmp162 * tmp163
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp165 = tmp161 + tmp164
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp166 = (tmp136 / tmp165)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp167 = tmp144 + tmp166
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr33 + (x3), tmp167, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr34 + (x3), tmp136, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr35 + (x3), tmp143, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_4:
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_3
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] x4 = xindex
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp173 = tl.load(in_ptr20 + (x4), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp174 = tl.load(in_ptr21 + (x4), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp179 = tl.load(in_ptr22 + (x4), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp186 = tl.load(in_ptr23 + (x4), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp188 = in_ptr24
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp168 = 0.09999999999999998
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp169 = 0.5
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp170 = tmp168 >= tmp169
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp171 = -0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp172 = tl.where(tmp170, tmp171, tmp168)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp175 = tmp173 - tmp174
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp176 = tmp172 * tmp175
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp177 = tl.where(tmp170, tmp173, tmp174)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp178 = tmp176 + tmp177
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp180 = 0.999
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp181 = tmp179 * tmp180
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp182 = 0.0010000000000000009
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp183 = tmp173 * tmp182
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp184 = tmp183 * tmp173
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp185 = tmp181 + tmp184
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp187 = libdevice.sqrt(tmp185)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp189 = 1.0
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp190 = tmp188 + tmp189
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp191 = libdevice.pow(tmp180, tmp190)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp192 = tmp189 - tmp191
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp193 = libdevice.sqrt(tmp192)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp194 = 0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp195 = libdevice.pow(tmp194, tmp190)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp196 = tmp189 - tmp195
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp197 = tl.full([1], 1, tl.int32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp198 = (tmp197 / tmp196)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp199 = 0.001
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp200 = tmp198 * tmp199
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp201 = -tmp200
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp202 = tmp193 * tmp201
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp203 = (tmp187 / tmp202)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp204 = (tmp197 / tmp201)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp205 = 1e-08
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp206 = tmp204 * tmp205
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp207 = tmp203 + tmp206
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp208 = (tmp178 / tmp207)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp209 = tmp186 + tmp208
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr42 + (x4), tmp209, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr43 + (x4), tmp178, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr44 + (x4), tmp185, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_5:
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_4
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] x5 = xindex
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp215 = tl.load(in_ptr25 + (x5), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp216 = tl.load(in_ptr26 + (x5), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp221 = tl.load(in_ptr27 + (x5), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp228 = tl.load(in_ptr28 + (x5), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp230 = in_ptr29
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp210 = 0.09999999999999998
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp211 = 0.5
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp212 = tmp210 >= tmp211
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp213 = -0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp214 = tl.where(tmp212, tmp213, tmp210)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp217 = tmp215 - tmp216
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp218 = tmp214 * tmp217
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp219 = tl.where(tmp212, tmp215, tmp216)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp220 = tmp218 + tmp219
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp222 = 0.999
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp223 = tmp221 * tmp222
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp224 = 0.0010000000000000009
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp225 = tmp215 * tmp224
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp226 = tmp225 * tmp215
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp227 = tmp223 + tmp226
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp229 = libdevice.sqrt(tmp227)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp231 = 1.0
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp232 = tmp230 + tmp231
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp233 = libdevice.pow(tmp222, tmp232)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp234 = tmp231 - tmp233
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp235 = libdevice.sqrt(tmp234)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp236 = 0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp237 = libdevice.pow(tmp236, tmp232)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp238 = tmp231 - tmp237
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp239 = tl.full([1], 1, tl.int32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp240 = (tmp239 / tmp238)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp241 = 0.001
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp242 = tmp240 * tmp241
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp243 = -tmp242
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp244 = tmp235 * tmp243
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp245 = (tmp229 / tmp244)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp246 = (tmp239 / tmp243)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp247 = 1e-08
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp248 = tmp246 * tmp247
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp249 = tmp245 + tmp248
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp250 = (tmp220 / tmp249)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp251 = tmp228 + tmp250
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr51 + (x5), tmp251, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr52 + (x5), tmp220, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr53 + (x5), tmp227, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_6:
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_5
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] x6 = xindex
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp257 = tl.load(in_ptr30 + (x6), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp258 = tl.load(in_ptr31 + (x6), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp263 = tl.load(in_ptr32 + (x6), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp270 = tl.load(in_ptr33 + (x6), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp272 = in_ptr34
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp252 = 0.09999999999999998
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp253 = 0.5
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp254 = tmp252 >= tmp253
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp255 = -0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp256 = tl.where(tmp254, tmp255, tmp252)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp259 = tmp257 - tmp258
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp260 = tmp256 * tmp259
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp261 = tl.where(tmp254, tmp257, tmp258)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp262 = tmp260 + tmp261
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp264 = 0.999
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp265 = tmp263 * tmp264
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp266 = 0.0010000000000000009
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp267 = tmp257 * tmp266
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp268 = tmp267 * tmp257
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp269 = tmp265 + tmp268
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp271 = libdevice.sqrt(tmp269)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp273 = 1.0
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp274 = tmp272 + tmp273
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp275 = libdevice.pow(tmp264, tmp274)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp276 = tmp273 - tmp275
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp277 = libdevice.sqrt(tmp276)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp278 = 0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp279 = libdevice.pow(tmp278, tmp274)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp280 = tmp273 - tmp279
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp281 = tl.full([1], 1, tl.int32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp282 = (tmp281 / tmp280)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp283 = 0.001
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp284 = tmp282 * tmp283
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp285 = -tmp284
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp286 = tmp277 * tmp285
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp287 = (tmp271 / tmp286)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp288 = (tmp281 / tmp285)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp289 = 1e-08
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp290 = tmp288 * tmp289
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp291 = tmp287 + tmp290
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp292 = (tmp262 / tmp291)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp293 = tmp270 + tmp292
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr60 + (x6), tmp293, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr61 + (x6), tmp262, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr62 + (x6), tmp269, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_7:
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_6
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] x7 = xindex
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp299 = tl.load(in_ptr35 + (x7), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp300 = tl.load(in_ptr36 + (x7), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp305 = tl.load(in_ptr37 + (x7), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp312 = tl.load(in_ptr38 + (x7), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp314 = in_ptr39
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp294 = 0.09999999999999998
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp295 = 0.5
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp296 = tmp294 >= tmp295
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp297 = -0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp298 = tl.where(tmp296, tmp297, tmp294)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp301 = tmp299 - tmp300
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp302 = tmp298 * tmp301
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp303 = tl.where(tmp296, tmp299, tmp300)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp304 = tmp302 + tmp303
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp306 = 0.999
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp307 = tmp305 * tmp306
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp308 = 0.0010000000000000009
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp309 = tmp299 * tmp308
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp310 = tmp309 * tmp299
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp311 = tmp307 + tmp310
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp313 = libdevice.sqrt(tmp311)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp315 = 1.0
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp316 = tmp314 + tmp315
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp317 = libdevice.pow(tmp306, tmp316)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp318 = tmp315 - tmp317
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp319 = libdevice.sqrt(tmp318)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp320 = 0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp321 = libdevice.pow(tmp320, tmp316)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp322 = tmp315 - tmp321
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp323 = tl.full([1], 1, tl.int32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp324 = (tmp323 / tmp322)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp325 = 0.001
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp326 = tmp324 * tmp325
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp327 = -tmp326
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp328 = tmp319 * tmp327
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp329 = (tmp313 / tmp328)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp330 = (tmp323 / tmp327)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp331 = 1e-08
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp332 = tmp330 * tmp331
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp333 = tmp329 + tmp332
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp334 = (tmp304 / tmp333)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp335 = tmp312 + tmp334
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr69 + (x7), tmp335, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr70 + (x7), tmp304, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr71 + (x7), tmp311, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_8:
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_7
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] x8 = xindex
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp341 = tl.load(in_ptr40 + (x8), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp342 = tl.load(in_ptr41 + (x8), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp347 = tl.load(in_ptr42 + (x8), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp354 = tl.load(in_ptr43 + (x8), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp356 = in_ptr44
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp336 = 0.09999999999999998
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp337 = 0.5
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp338 = tmp336 >= tmp337
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp339 = -0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp340 = tl.where(tmp338, tmp339, tmp336)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp343 = tmp341 - tmp342
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp344 = tmp340 * tmp343
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp345 = tl.where(tmp338, tmp341, tmp342)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp346 = tmp344 + tmp345
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp348 = 0.999
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp349 = tmp347 * tmp348
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp350 = 0.0010000000000000009
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp351 = tmp341 * tmp350
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp352 = tmp351 * tmp341
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp353 = tmp349 + tmp352
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp355 = libdevice.sqrt(tmp353)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp357 = 1.0
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp358 = tmp356 + tmp357
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp359 = libdevice.pow(tmp348, tmp358)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp360 = tmp357 - tmp359
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp361 = libdevice.sqrt(tmp360)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp362 = 0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp363 = libdevice.pow(tmp362, tmp358)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp364 = tmp357 - tmp363
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp365 = tl.full([1], 1, tl.int32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp366 = (tmp365 / tmp364)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp367 = 0.001
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp368 = tmp366 * tmp367
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp369 = -tmp368
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp370 = tmp361 * tmp369
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp371 = (tmp355 / tmp370)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp372 = (tmp365 / tmp369)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp373 = 1e-08
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp374 = tmp372 * tmp373
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp375 = tmp371 + tmp374
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp376 = (tmp346 / tmp375)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp377 = tmp354 + tmp376
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr78 + (x8), tmp377, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr79 + (x8), tmp346, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr80 + (x8), tmp353, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_9:
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_8
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] x9 = xindex
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp383 = tl.load(in_ptr45 + (x9), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp384 = tl.load(in_ptr46 + (x9), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp389 = tl.load(in_ptr47 + (x9), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp396 = tl.load(in_ptr48 + (x9), None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp398 = in_ptr49
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp378 = 0.09999999999999998
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp379 = 0.5
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp380 = tmp378 >= tmp379
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp381 = -0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp382 = tl.where(tmp380, tmp381, tmp378)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp385 = tmp383 - tmp384
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp386 = tmp382 * tmp385
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp387 = tl.where(tmp380, tmp383, tmp384)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp388 = tmp386 + tmp387
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp390 = 0.999
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp391 = tmp389 * tmp390
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp392 = 0.0010000000000000009
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp393 = tmp383 * tmp392
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp394 = tmp393 * tmp383
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp395 = tmp391 + tmp394
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp397 = libdevice.sqrt(tmp395)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp399 = 1.0
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp400 = tmp398 + tmp399
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp401 = libdevice.pow(tmp390, tmp400)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp402 = tmp399 - tmp401
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp403 = libdevice.sqrt(tmp402)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp404 = 0.9
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp405 = libdevice.pow(tmp404, tmp400)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp406 = tmp399 - tmp405
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp407 = tl.full([1], 1, tl.int32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp408 = (tmp407 / tmp406)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp409 = 0.001
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp410 = tmp408 * tmp409
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp411 = -tmp410
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp412 = tmp403 * tmp411
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp413 = (tmp397 / tmp412)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp414 = (tmp407 / tmp411)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp415 = 1e-08
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp416 = tmp414 * tmp415
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp417 = tmp413 + tmp416
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp418 = (tmp388 / tmp417)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp419 = tmp396 + tmp418
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr87 + (x9), tmp419, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr88 + (x9), tmp388, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr89 + (x9), tmp395, None)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] else:
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] pass
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] ''', device_str='cuda')
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] cpp_fused__foreach_copy_1 = async_compile.cpp_pybinding(['const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*'], '''
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] #include "/tmp/torchinductor_ci-user/pi/cpicxudqmdsjh5cm4klbtbrvy2cxwr7whxl3md2zzdjdf3orvfdf.h"
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] extern "C" void kernel(const float* in_ptr0,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr1,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr2,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr3,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr4,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr5,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr6,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr7,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr8,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr9,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr1,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr3,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr5,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr7,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr9,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr11,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr13,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr15,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr17,
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr19)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr0[static_cast<int64_t>(0L)];
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr1[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr1[static_cast<int64_t>(0L)];
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr3[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr2[static_cast<int64_t>(0L)];
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr5[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr3[static_cast<int64_t>(0L)];
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr7[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr4[static_cast<int64_t>(0L)];
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr9[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr5[static_cast<int64_t>(0L)];
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr11[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr6[static_cast<int64_t>(0L)];
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr13[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr7[static_cast<int64_t>(0L)];
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr15[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr8[static_cast<int64_t>(0L)];
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr17[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr9[static_cast<int64_t>(0L)];
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr19[static_cast<int64_t>(0L)] = tmp2;
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] ''')
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] async_compile.wait(globals())
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del async_compile
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] def call(args):
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1, arg15_1, arg16_1, arg17_1, arg18_1, arg19_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg30_1, arg31_1, arg32_1, arg33_1, arg34_1, arg35_1, arg36_1, arg37_1, arg38_1, arg39_1, arg40_1, arg41_1, arg42_1, arg43_1, arg44_1, arg45_1, arg46_1, arg47_1, arg48_1, arg49_1 = args
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] args.clear()
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg0_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg1_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg2_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg3_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg4_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg5_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg6_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg7_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg8_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg9_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg10_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg11_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg12_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg13_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg14_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg15_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg16_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg17_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg18_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg19_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg20_1, (), ())
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg21_1, (), ())
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg22_1, (), ())
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg23_1, (), ())
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg24_1, (), ())
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg25_1, (), ())
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg26_1, (), ())
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg27_1, (), ())
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg28_1, (), ())
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg29_1, (), ())
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg30_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg31_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg32_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg33_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg34_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg35_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg36_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg37_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg38_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg39_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg40_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg41_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg42_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg43_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg44_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg45_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg46_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg47_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg48_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg49_1, (1024, 1024), (1024, 1))
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] with torch.cuda._DeviceGuard(0):
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] torch.cuda.set_device(0)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] # Unsorted Source Nodes: [], Original ATen: []
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] stream0 = get_raw_stream(0)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] triton_for_fused_0.run(arg1_1, arg30_1, arg40_1, arg0_1, arg20_1.item(), arg3_1, arg31_1, arg41_1, arg2_1, arg21_1.item(), arg5_1, arg32_1, arg42_1, arg4_1, arg22_1.item(), arg7_1, arg33_1, arg43_1, arg6_1, arg23_1.item(), arg9_1, arg34_1, arg44_1, arg8_1, arg24_1.item(), arg11_1, arg35_1, arg45_1, arg10_1, arg25_1.item(), arg13_1, arg36_1, arg46_1, arg12_1, arg26_1.item(), arg15_1, arg37_1, arg47_1, arg14_1, arg27_1.item(), arg17_1, arg38_1, arg48_1, arg16_1, arg28_1.item(), arg19_1, arg39_1, arg49_1, arg18_1, arg29_1.item(), arg0_1, arg30_1, arg40_1, arg2_1, arg31_1, arg41_1, arg4_1, arg32_1, arg42_1, arg6_1, arg33_1, arg43_1, arg8_1, arg34_1, arg44_1, arg10_1, arg35_1, arg45_1, arg12_1, arg36_1, arg46_1, arg14_1, arg37_1, arg47_1, arg16_1, arg38_1, arg48_1, arg18_1, arg39_1, arg49_1, stream=stream0)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg0_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg10_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg11_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg12_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg13_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg14_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg15_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg16_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg17_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg18_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg19_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg1_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg2_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg30_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg31_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg32_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg33_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg34_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg35_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg36_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg37_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg38_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg39_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg3_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg40_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg41_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg42_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg43_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg44_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg45_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg46_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg47_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg48_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg49_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg4_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg5_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg6_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg7_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg8_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg9_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] cpp_fused__foreach_copy_1(arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg20_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg21_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg22_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg23_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg24_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg25_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg26_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg27_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg28_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg29_1
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] return ()
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] def benchmark_compiled_module(times=10, repeat=10):
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._dynamo.testing import rand_strided
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.utils import print_performance
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg0_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg1_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg2_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg3_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg4_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg5_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg6_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg7_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg8_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg9_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg10_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg11_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg12_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg13_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg14_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg15_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg16_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg17_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg18_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg19_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg20_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg21_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg22_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg23_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg24_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg25_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg26_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg27_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg28_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg29_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg30_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg31_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg32_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg33_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg34_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg35_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg36_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg37_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg38_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg39_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg40_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg41_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg42_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg43_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg44_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg45_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg46_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg47_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg48_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg49_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1, arg15_1, arg16_1, arg17_1, arg18_1, arg19_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg30_1, arg31_1, arg32_1, arg33_1, arg34_1, arg35_1, arg36_1, arg37_1, arg38_1, arg39_1, arg40_1, arg41_1, arg42_1, arg43_1, arg44_1, arg45_1, arg46_1, arg47_1, arg48_1, arg49_1])
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] return print_performance(fn, times=times, repeat=repeat)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] if __name__ == "__main__":
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.wrapper_benchmark import compiled_module_main
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code] compiled_module_main('None', benchmark_compiled_module)
V0423 16:42:31.543000 660 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0423 16:42:31.588000 660 torch/_inductor/graph.py:2115] [0/1] [__output_code] Output code written to: /tmp/torchinductor_ci-user/k4/ck4kb6cu7yevvtk2zmzayff6bb3dxlvjgwhwcprf2uhtioqpmfwd.py
I0423 16:42:31.646000 660 torch/_inductor/graph.py:2149] [0/1] [__output_code] Output code written to: /tmp/torchinductor_ci-user/k4/ck4kb6cu7yevvtk2zmzayff6bb3dxlvjgwhwcprf2uhtioqpmfwd.py
eager runtime: 1214.427384998089us
compiled runtime: 759.7282424078664us
结论¶
在本教程中,我们成功地使用 foreach_map
实现了一个自定义的完全融合的 Adam 优化器。通过利用 foreach_map
和 torch.compile
的强大功能,我们创建了一个优化版本的 Adam 优化器,可用于各种机器学习应用。本教程提供了关于如何使用 foreach_map
和 torch.compile
优化机器学习模型的全面指南,对于希望通过水平融合改进模型性能的开发者来说,是一个宝贵的资源。
另请参阅
编译优化器教程 - 编译优化器简介。
使用 PT2 编译优化器 - 编译优化器的更深入技术细节。
脚本总运行时间:( 0 分钟 12.608 秒)