注意
单击 此处 下载完整的示例代码
PyTorch 基准测试¶
本食谱提供了一个快速入门指南,介绍如何使用 PyTorch benchmark
模块来衡量和比较代码性能。
简介¶
基准测试是编写代码的重要步骤。它有助于我们验证代码是否满足性能预期、比较解决同一问题的不同方法,以及防止性能下降。
在基准测试 PyTorch 代码时,有很多选择,包括 Python 内置的 timeit
模块。但是,基准测试 PyTorch 代码有很多需要注意的地方,很容易被忽略,例如管理线程数量和同步 CUDA 设备。此外,为基准测试生成张量输入可能非常繁琐。
本食谱演示了如何使用 PyTorch benchmark
模块来避免常见的错误,同时更容易比较不同代码的性能、为基准测试生成输入等等。
步骤¶
定义要基准测试的函数
使用
timeit.Timer
进行基准测试使用
torch.utils.benchmark.Timer
进行基准测试使用
Blocked Autorange
进行基准测试比较基准测试结果
保存/加载基准测试结果
使用
Fuzzed Parameters
生成输入使用
Callgrind
收集指令计数
1. 定义要基准测试的函数¶
截至撰写本文时,torch.dot 不支持批处理模式,因此我们将比较使用现有 torch
运算符实现它的两种方法:一种方法使用 mul
和 sum
的组合,而另一种方法将问题简化为 bmm
。
import torch
def batched_dot_mul_sum(a, b):
'''Computes batched dot by multiplying and summing'''
return a.mul(b).sum(-1)
def batched_dot_bmm(a, b):
'''Computes batched dot by reducing to ``bmm``'''
a = a.reshape(-1, 1, a.shape[-1])
b = b.reshape(-1, b.shape[-1], 1)
return torch.bmm(a, b).flatten(-3)
# Input for benchmarking
x = torch.randn(10000, 64)
# Ensure that both functions compute the same output
assert batched_dot_mul_sum(x, x).allclose(batched_dot_bmm(x, x))
2. 使用 timeit.Timer
进行基准测试¶
首先,让我们使用 Python 的内置 timeit
模块对代码进行基准测试。我们在此处将基准测试代码保持简单,以便我们可以比较 timeit
和 torch.utils.benchmark
的默认值。
import timeit
t0 = timeit.Timer(
stmt='batched_dot_mul_sum(x, x)',
setup='from __main__ import batched_dot_mul_sum',
globals={'x': x})
t1 = timeit.Timer(
stmt='batched_dot_bmm(x, x)',
setup='from __main__ import batched_dot_bmm',
globals={'x': x})
print(f'mul_sum(x, x): {t0.timeit(100) / 100 * 1e6:>5.1f} us')
print(f'bmm(x, x): {t1.timeit(100) / 100 * 1e6:>5.1f} us')
mul_sum(x, x): 111.6 us
bmm(x, x): 70.0 us
3. 使用 torch.utils.benchmark.Timer
进行基准测试¶
PyTorch benchmark
模块旨在为那些以前使用过 timeit
模块的人所熟悉。但是,它的默认值使它更容易、更安全地用于对 PyTorch 代码进行基准测试。首先让我们比较与上面相同的基本 API。
import torch.utils.benchmark as benchmark
t0 = benchmark.Timer(
stmt='batched_dot_mul_sum(x, x)',
setup='from __main__ import batched_dot_mul_sum',
globals={'x': x})
t1 = benchmark.Timer(
stmt='batched_dot_bmm(x, x)',
setup='from __main__ import batched_dot_bmm',
globals={'x': x})
print(t0.timeit(100))
print(t1.timeit(100))
<torch.utils.benchmark.utils.common.Measurement object at 0x7fb10400d0f0>
batched_dot_mul_sum(x, x)
setup: from __main__ import batched_dot_mul_sum
379.29 us
1 measurement, 100 runs , 1 thread
<torch.utils.benchmark.utils.common.Measurement object at 0x7fb103d67048>
batched_dot_bmm(x, x)
setup: from __main__ import batched_dot_bmm
716.42 us
1 measurement, 100 runs , 1 thread
尽管基本功能的 API 相同,但有一些重要的区别。benchmark.Timer.timeit()
返回每次运行的时间,而不是像 timeit.Timer.timeit()
那样返回总运行时间。PyTorch benchmark
模块还提供用于打印结果的格式化字符串表示。
另一个重要区别,也是结果差异的原因是 PyTorch 基准测试模块默认情况下在单个线程中运行。我们可以使用 num_threads
参数更改线程数量。
torch.utils.benchmark.Timer
接受几个额外的参数,包括:label
、sub_label
、description
和 env
,它们会更改返回的测量对象的 __repr__,并用于对结果进行分组(稍后将详细介绍)。
num_threads = torch.get_num_threads()
print(f'Benchmarking on {num_threads} threads')
t0 = benchmark.Timer(
stmt='batched_dot_mul_sum(x, x)',
setup='from __main__ import batched_dot_mul_sum',
globals={'x': x},
num_threads=num_threads,
label='Multithreaded batch dot',
sub_label='Implemented using mul and sum')
t1 = benchmark.Timer(
stmt='batched_dot_bmm(x, x)',
setup='from __main__ import batched_dot_bmm',
globals={'x': x},
num_threads=num_threads,
label='Multithreaded batch dot',
sub_label='Implemented using bmm')
print(t0.timeit(100))
print(t1.timeit(100))
Benchmarking on 40 threads
<torch.utils.benchmark.utils.common.Measurement object at 0x7fb103d54080>
Multithreaded batch dot: Implemented using mul and sum
setup: from __main__ import batched_dot_mul_sum
118.47 us
1 measurement, 100 runs , 40 threads
<torch.utils.benchmark.utils.common.Measurement object at 0x7fb16935d2e8>
Multithreaded batch dot: Implemented using bmm
setup: from __main__ import batched_dot_bmm
68.21 us
1 measurement, 100 runs , 40 threads
使用所有可用线程运行 benchmark
会产生与 timeit
模块类似的结果。更重要的是,哪个版本更快取决于我们运行代码的线程数量。这就是为什么在代表真实用例的线程设置下对代码进行基准测试非常重要的原因。另一件要记住的重要事项是在 GPU 上进行基准测试时同步 CPU 和 CUDA。让我们在 CUDA 张量上再次运行上面的基准测试,看看会发生什么。
x = torch.randn(10000, 1024, device='cuda')
t0 = timeit.Timer(
stmt='batched_dot_mul_sum(x, x)',
setup='from __main__ import batched_dot_mul_sum',
globals={'x': x})
t1 = timeit.Timer(
stmt='batched_dot_bmm(x, x)',
setup='from __main__ import batched_dot_bmm',
globals={'x': x})
# Ran each twice to show difference before/after warm-up
print(f'mul_sum(x, x): {t0.timeit(100) / 100 * 1e6:>5.1f} us')
print(f'mul_sum(x, x): {t0.timeit(100) / 100 * 1e6:>5.1f} us')
print(f'bmm(x, x): {t1.timeit(100) / 100 * 1e6:>5.1f} us')
print(f'bmm(x, x): {t1.timeit(100) / 100 * 1e6:>5.1f} us')
mul_sum(x, x): 27.6 us
mul_sum(x, x): 25.3 us
bmm(x, x): 2775.5 us
bmm(x, x): 22.4 us
t0 = benchmark.Timer(
stmt='batched_dot_mul_sum(x, x)',
setup='from __main__ import batched_dot_mul_sum',
globals={'x': x})
t1 = benchmark.Timer(
stmt='batched_dot_bmm(x, x)',
setup='from __main__ import batched_dot_bmm',
globals={'x': x})
# Run only once since benchmark module does warm-up for us
print(t0.timeit(100))
print(t1.timeit(100))
<torch.utils.benchmark.utils.common.Measurement object at 0x7fb10400d080>
batched_dot_mul_sum(x, x)
setup: from __main__ import batched_dot_mul_sum
232.93 us
1 measurement, 100 runs , 1 thread
<torch.utils.benchmark.utils.common.Measurement object at 0x7fb10400d0f0>
batched_dot_bmm(x, x)
setup: from __main__ import batched_dot_bmm
181.04 us
1 measurement, 100 runs , 1 thread
结果揭示了一些有趣的事情。使用 timeit
模块对 bmm
版本进行的第一次运行比第二次运行花费的时间长得多。这是因为 bmm
调用 cuBLAS,它需要在第一次调用时加载,这需要一些时间。这就是为什么在进行基准测试之前进行预热运行非常重要的原因,幸运的是,PyTorch 的 benchmark
模块会负责这项工作。
timeit
和 benchmark
模块之间的结果差异是因为 timeit 模块没有同步 CUDA,因此只对启动内核的时间进行计时。PyTorch 的 benchmark
模块会为我们进行同步。
4. 使用 Blocked Autorange 进行基准测试¶
虽然 timeit.Timer.autorange
进行一次至少 0.2 秒的连续测量,但 torch.utils.benchmark.blocked_autorange 进行多次测量,其总时间至少为 0.2 秒(可以通过 min_run_time 参数更改),前提是计时开销是总测量时间的一小部分。这是通过首先使用每次循环的运行次数递增进行运行来实现的,直到运行时间远远大于测量开销(这也用作预热),然后进行测量,直到达到目标时间。这具有以下有用的属性:它浪费更少的数据,并且允许我们计算统计数据来估计测量的可靠性。
m0 = t0.blocked_autorange()
m1 = t1.blocked_autorange()
print(m0)
print(m1)
<torch.utils.benchmark.utils.common.Measurement object at 0x7fb10400d0f0>
batched_dot_mul_sum(x, x)
setup: from __main__ import batched_dot_mul_sum
231.79 us
1 measurement, 1000 runs , 1 thread
<torch.utils.benchmark.utils.common.Measurement object at 0x7fb10400d080>
batched_dot_bmm(x, x)
setup: from __main__ import batched_dot_bmm
Median: 162.08 us
2 measurements, 1000 runs per measurement, 1 thread
我们还可以检查返回的测量对象中的各个统计信息。
print(f"Mean: {m0.mean * 1e6:6.2f} us")
print(f"Median: {m0.median * 1e6:6.2f} us")
Mean: 231.79 us
Median: 231.79 us
5. 比较基准测试结果¶
到目前为止,我们一直在将批处理点运算的两个版本与单个输入进行比较。在实践中,我们希望尝试多种输入组合以及不同的线程数量。Compare
类有助于以格式化表格显示多次测量的结果。它使用上面描述的注释(label、sub_label、num_threads 等)以及 description 来对表格进行分组和组织。让我们使用 Compare
来查看我们的函数在不同输入大小和线程数量下的表现如何。
from itertools import product
# Compare takes a list of measurements which we'll save in results.
results = []
sizes = [1, 64, 1024, 10000]
for b, n in product(sizes, sizes):
# label and sub_label are the rows
# description is the column
label = 'Batched dot'
sub_label = f'[{b}, {n}]'
x = torch.ones((b, n))
for num_threads in [1, 4, 16, 32]:
results.append(benchmark.Timer(
stmt='batched_dot_mul_sum(x, x)',
setup='from __main__ import batched_dot_mul_sum',
globals={'x': x},
num_threads=num_threads,
label=label,
sub_label=sub_label,
description='mul/sum',
).blocked_autorange(min_run_time=1))
results.append(benchmark.Timer(
stmt='batched_dot_bmm(x, x)',
setup='from __main__ import batched_dot_bmm',
globals={'x': x},
num_threads=num_threads,
label=label,
sub_label=sub_label,
description='bmm',
).blocked_autorange(min_run_time=1))
compare = benchmark.Compare(results)
compare.print()
[--------------- Batched dot ----------------]
| mul/sum | bmm
1 threads: -----------------------------------
[1, 1] | 5.9 | 11.2
[1, 64] | 6.4 | 11.4
[1, 1024] | 6.7 | 14.2
[1, 10000] | 10.2 | 23.7
[64, 1] | 6.3 | 11.5
[64, 64] | 8.6 | 15.4
[64, 1024] | 39.4 | 204.4
[64, 10000] | 274.9 | 748.5
[1024, 1] | 7.7 | 17.8
[1024, 64] | 40.3 | 76.4
[1024, 1024] | 432.4 | 2795.9
[1024, 10000] | 22657.3 | 11899.5
[10000, 1] | 16.9 | 74.8
[10000, 64] | 300.3 | 609.4
[10000, 1024] | 23098.6 | 27246.1
[10000, 10000] | 267073.7 | 118823.7
4 threads: -----------------------------------
[1, 1] | 6.0 | 11.5
[1, 64] | 6.2 | 11.2
[1, 1024] | 6.8 | 14.3
[1, 10000] | 10.2 | 23.7
[64, 1] | 6.3 | 16.2
[64, 64] | 8.8 | 18.2
[64, 1024] | 41.5 | 189.1
[64, 10000] | 91.7 | 849.1
[1024, 1] | 7.6 | 17.4
[1024, 64] | 43.5 | 33.5
[1024, 1024] | 135.4 | 2782.3
[1024, 10000] | 7471.1 | 11874.0
[10000, 1] | 16.8 | 33.9
[10000, 64] | 118.7 | 173.2
[10000, 1024] | 7264.6 | 27824.7
[10000, 10000] | 100060.9 | 121499.0
16 threads: ----------------------------------
[1, 1] | 6.0 | 11.3
[1, 64] | 6.2 | 11.2
[1, 1024] | 6.9 | 14.2
[1, 10000] | 10.3 | 23.8
[64, 1] | 6.4 | 24.1
[64, 64] | 9.0 | 23.8
[64, 1024] | 54.1 | 188.5
[64, 10000] | 49.9 | 748.0
[1024, 1] | 7.6 | 23.4
[1024, 64] | 55.5 | 28.2
[1024, 1024] | 66.9 | 2773.9
[1024, 10000] | 6111.5 | 12833.7
[10000, 1] | 16.9 | 27.5
[10000, 64] | 59.5 | 73.7
[10000, 1024] | 6295.9 | 27062.0
[10000, 10000] | 71804.5 | 120365.8
32 threads: ----------------------------------
[1, 1] | 5.9 | 11.3
[1, 64] | 6.2 | 11.3
[1, 1024] | 6.7 | 14.2
[1, 10000] | 10.5 | 23.8
[64, 1] | 6.3 | 31.7
[64, 64] | 9.1 | 30.4
[64, 1024] | 72.0 | 190.4
[64, 10000] | 103.1 | 746.9
[1024, 1] | 7.6 | 28.4
[1024, 64] | 70.5 | 31.9
[1024, 1024] | 65.6 | 2804.6
[1024, 10000] | 6764.0 | 11871.4
[10000, 1] | 17.8 | 31.8
[10000, 64] | 110.3 | 56.0
[10000, 1024] | 6640.2 | 27592.2
[10000, 10000] | 73003.4 | 120083.2
Times are in microseconds (us).
上面的结果表明,将问题简化为 bmm
的版本在多线程运行的较大张量上表现更好,而对于较小或单线程代码,另一个版本表现更好。
Compare
还提供用于更改表格格式的函数
compare.trim_significant_figures()
compare.colorize()
compare.print()
6. 保存/加载基准测试结果¶
Measurements(以及第 8 节中描述的 CallgrindStats
)可以通过 pickle
模块进行序列化。这使得 A/B 测试变得很容易,因为你可以从两个独立的环境中收集测量结果,将它们腌制起来,然后在一个环境中加载两个结果。Timer 甚至接受一个 env 构造函数参数,以便这种 A/B 测试可以无缝进行。
让我们假设,不是两个 Python 函数,而是 add/sum 和 bmm
方法位于 PyTorch 的两个不同构建中。下面的示例演示了如何对它们进行 A/B 测试。为简单起见,我们只使用形状的子集,并将结果简单地往返于 pickle,而不是实际使用多个环境并将结果写入磁盘。
import pickle
ab_test_results = []
for env in ('environment A: mul/sum', 'environment B: bmm'):
for b, n in ((1, 1), (1024, 10000), (10000, 1)):
x = torch.ones((b, n))
dot_fn = (batched_dot_mul_sum if env == 'environment A: mul/sum' else batched_dot_bmm)
m = benchmark.Timer(
stmt='batched_dot(x, x)',
globals={'x': x, 'batched_dot': dot_fn},
num_threads=1,
label='Batched dot',
description=f'[{b}, {n}]',
env=env,
).blocked_autorange(min_run_time=1)
ab_test_results.append(pickle.dumps(m))
ab_results = [pickle.loads(i) for i in ab_test_results]
compare = benchmark.Compare(ab_results)
compare.trim_significant_figures()
compare.colorize()
compare.print()
[------------------------------------- Batched dot -------------------------------------]
| [1, 1] | [1024, 10000] | [10000, 1]
1 threads: ------------------------------------------------------------------------------
(environment A: mul/sum) batched_dot(x, x) | 7 | 36000 | 21
(environment B: bmm) batched_dot(x, x) | 14 | 40000 | 85
Times are in microseconds (us).
# And just to show that we can round trip all of the results from earlier:
round_tripped_results = pickle.loads(pickle.dumps(results))
assert(str(benchmark.Compare(results)) == str(benchmark.Compare(round_tripped_results)))
7. 使用 Fuzzed Parameters 生成输入¶
正如我们在上一节中看到的,根据输入张量,性能可能会出现一些显著的差异。因此,在许多不同的输入上运行基准测试是一个好主意。但是,创建所有这些输入张量可能很繁琐,这就是 torch.utils.benchmark.Fuzzer
和相关类发挥作用的地方。让我们看看如何使用 Fuzzer
为基准测试创建一些测试用例。
from torch.utils.benchmark import Fuzzer, FuzzedParameter, FuzzedTensor, ParameterAlias
# Generates random tensors with 128 to 10000000 elements and sizes k0 and k1 chosen from a
# ``loguniform`` distribution in [1, 10000], 40% of which will be discontiguous on average.
example_fuzzer = Fuzzer(
parameters = [
FuzzedParameter('k0', minval=1, maxval=10000, distribution='loguniform'),
FuzzedParameter('k1', minval=1, maxval=10000, distribution='loguniform'),
],
tensors = [
FuzzedTensor('x', size=('k0', 'k1'), min_elements=128, max_elements=10000000, probability_contiguous=0.6)
],
seed=0,
)
results = []
for tensors, tensor_params, params in example_fuzzer.take(10):
# description is the column label
sub_label=f"{params['k0']:<6} x {params['k1']:<4} {'' if tensor_params['x']['is_contiguous'] else '(discontiguous)'}"
results.append(benchmark.Timer(
stmt='batched_dot_mul_sum(x, x)',
setup='from __main__ import batched_dot_mul_sum',
globals=tensors,
label='Batched dot',
sub_label=sub_label,
description='mul/sum',
).blocked_autorange(min_run_time=1))
results.append(benchmark.Timer(
stmt='batched_dot_bmm(x, x)',
setup='from __main__ import batched_dot_bmm',
globals=tensors,
label='Batched dot',
sub_label=sub_label,
description='bmm',
).blocked_autorange(min_run_time=1))
compare = benchmark.Compare(results)
compare.trim_significant_figures()
compare.print()
[--------------------- Batched dot ---------------------]
| mul/sum | bmm
1 threads: ----------------------------------------------
725 x 257 | 87 | 180
49 x 383 | 15 | 30
34 x 1468 | 30 | 118
187 x 5039 | 400 | 1200
2140 x 1296 (discontiguous) | 2000 | 41000
78 x 1598 | 74 | 310
519 x 763 | 190 | 1500
141 x 1082 | 87 | 500
78 x 5 (discontiguous) | 9 | 20
187 x 1 | 12 | 10
Times are in microseconds (us).
定义自己的 fuzzers
有很大的灵活性,这非常适合创建强大的输入集进行基准测试。但为了让事情更简单,PyTorch 基准测试模块提供了一些内置的 fuzzers
,用于满足常见的基准测试需求。让我们看看如何使用其中一个内置的 fuzzers
。
from torch.utils.benchmark.op_fuzzers import binary
results = []
for tensors, tensor_params, params in binary.BinaryOpFuzzer(seed=0).take(10):
sub_label=f"{params['k0']:<6} x {params['k1']:<4} {'' if tensor_params['x']['is_contiguous'] else '(discontiguous)'}"
results.append(benchmark.Timer(
stmt='batched_dot_mul_sum(x, x)',
setup='from __main__ import batched_dot_mul_sum',
globals=tensors,
label='Batched dot',
sub_label=sub_label,
description='mul/sum',
).blocked_autorange(min_run_time=1))
results.append(benchmark.Timer(
stmt='batched_dot_bmm(x, x)',
setup='from __main__ import batched_dot_bmm',
globals=tensors,
label='Batched dot',
sub_label=sub_label,
description='bmm',
).blocked_autorange(min_run_time=1))
compare = benchmark.Compare(results)
compare.trim_significant_figures()
compare.colorize(rowwise=True)
compare.print()
[----------------------- Batched dot ------------------------]
| mul/sum | bmm
1 threads: ---------------------------------------------------
64 x 473 (discontiguous) | 10000 | 40000
16384 x 12642115 (discontiguous) | 31 | 78
8192 x 892 | 4800 | 20400
512 x 64 (discontiguous) | 110000 | 400000
493 x 27 (discontiguous) | 1100 | 2440
118 x 32 (discontiguous) | 870 | 2030
16 x 495 (discontiguous) | 23600 | 24000
488 x 62374 | 90000 | 100000
240372 x 69 | 40000 | 16000
40156 x 32 (discontiguous) | 2670 | 5000
Times are in microseconds (us).
8. 使用 Callgrind
收集指令计数¶
优化代码的挑战之一是挂钟时间的变化和不透明性。从自适应时钟速度到与其他进程的资源争用,存在许多不确定性的来源。此外,端到端时间不会洞悉时间在哪些地方被消耗,而这正是我们在优化代码时真正感兴趣的。
一种补充方法是收集指令计数。这些计数是一种代理指标,不反映性能的所有方面(例如内存或 I/O 绑定任务),但它们确实具有一些有用的属性。指令计数是可重现的,不受环境变化的影响,并且提供对程序在哪些地方消耗周期的细粒度洞察。
为了了解指令计数的效用,让我们看看如何减少 batched_dot_mul_sum 的开销。显而易见的解决方案是将其移至 C++,这样可以避免多次在 Python 和 C++ 之间进行切换。
幸运的是,源代码几乎相同。我们在 C++ 中要问的一个问题是我们应该按值传递参数还是按引用传递参数。
batched_dot_src = """\
/* ---- Python ---- */
// def batched_dot_mul_sum(a, b):
// return a.mul(b).sum(-1)
torch::Tensor batched_dot_mul_sum_v0(
const torch::Tensor a,
const torch::Tensor b) {
return a.mul(b).sum(-1);
}
torch::Tensor batched_dot_mul_sum_v1(
const torch::Tensor& a,
const torch::Tensor& b) {
return a.mul(b).sum(-1);
}
"""
# PyTorch makes it easy to test our C++ implementations by providing a utility
# to JIT compile C++ source into Python extensions:
import os
from torch.utils import cpp_extension
cpp_lib = cpp_extension.load_inline(
name='cpp_lib',
cpp_sources=batched_dot_src,
extra_cflags=['-O3'],
extra_include_paths=[
# `load_inline` needs to know where to find ``pybind11`` headers.
os.path.join(os.getenv('CONDA_PREFIX'), 'include')
],
functions=['batched_dot_mul_sum_v0', 'batched_dot_mul_sum_v1']
)
# `load_inline` will create a shared object that is loaded into Python. When we collect
# instruction counts Timer will create a subprocess, so we need to re-import it. The
# import process is slightly more complicated for C extensions, but that's all we're
# doing here.
module_import_str = f"""\
# https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path
import importlib.util
spec = importlib.util.spec_from_file_location("cpp_lib", {repr(cpp_lib.__file__)})
cpp_lib = importlib.util.module_from_spec(spec)
spec.loader.exec_module(cpp_lib)"""
import textwrap
def pretty_print(result):
"""Import machinery for ``cpp_lib.so`` can get repetitive to look at."""
print(repr(result).replace(textwrap.indent(module_import_str, " "), " import cpp_lib"))
t_baseline = benchmark.Timer(
stmt='batched_dot_mul_sum(x, x)',
setup='''\
from __main__ import batched_dot_mul_sum
x = torch.randn(2, 2)''')
t0 = benchmark.Timer(
stmt='cpp_lib.batched_dot_mul_sum_v0(x, x)',
setup=f'''\
{module_import_str}
x = torch.randn(2, 2)''')
t1 = benchmark.Timer(
stmt='cpp_lib.batched_dot_mul_sum_v1(x, x)',
setup=f'''\
{module_import_str}
x = torch.randn(2, 2)''')
# Moving to C++ did indeed reduce overhead, but it's hard to tell which
# calling convention is more efficient. v1 (call with references) seems to
# be a bit faster, but it's within measurement error.
pretty_print(t_baseline.blocked_autorange())
pretty_print(t0.blocked_autorange())
pretty_print(t1.blocked_autorange())
<torch.utils.benchmark.utils.common.Measurement object at 0x7fb16935d2e8>
batched_dot_mul_sum(x, x)
setup:
from __main__ import batched_dot_mul_sum
x = torch.randn(2, 2)
6.92 us
1 measurement, 100000 runs , 1 thread
<torch.utils.benchmark.utils.common.Measurement object at 0x7fb16935d2e8>
cpp_lib.batched_dot_mul_sum_v0(x, x)
setup:
import cpp_lib
x = torch.randn(2, 2)
5.29 us
1 measurement, 100000 runs , 1 thread
<torch.utils.benchmark.utils.common.Measurement object at 0x7fb16935d2e8>
cpp_lib.batched_dot_mul_sum_v1(x, x)
setup:
import cpp_lib
x = torch.randn(2, 2)
5.22 us
1 measurement, 100000 runs , 1 thread
# Let's use ``Callgrind`` to determine which is better.
stats_v0 = t0.collect_callgrind()
stats_v1 = t1.collect_callgrind()
pretty_print(stats_v0)
pretty_print(stats_v1)
# `.as_standardized` removes file names and some path prefixes, and makes
# it easier to read the function symbols.
stats_v0 = stats_v0.as_standardized()
stats_v1 = stats_v1.as_standardized()
# `.delta` diffs the instruction counts, and `.denoise` removes several
# functions in the Python interpreter that are known to have significant
# jitter.
delta = stats_v1.delta(stats_v0).denoise()
# `.transform` is a convenience API for transforming function names. It is
# useful for increasing cancelation when ``diff-ing`` instructions, as well as
# just generally improving readability.
replacements = (
("???:void pybind11", "pybind11"),
("batched_dot_mul_sum_v0", "batched_dot_mul_sum_v1"),
("at::Tensor, at::Tensor", "..."),
("at::Tensor const&, at::Tensor const&", "..."),
("auto torch::detail::wrap_pybind_function_impl_", "wrap_pybind_function_impl_"),
)
for before, after in replacements:
delta = delta.transform(lambda l: l.replace(before, after))
# We can use print options to control how much of the function to display.
torch.set_printoptions(linewidth=160)
# Once parsed, the instruction counts make clear that passing `a` and `b`
# by reference is more efficient as it skips some ``c10::TensorImpl`` bookkeeping
# for the intermediate Tensors, and is also works better with ``pybind11``. This
# is consistent with our noisy wall time observations.
print(delta)
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.CallgrindStats object at 0x7fb0f06e7630>
cpp_lib.batched_dot_mul_sum_v0(x, x)
setup:
import cpp_lib
x = torch.randn(2, 2)
All Noisy symbols removed
Instructions: 2392671 2392671
Baseline: 4367 4367
100 runs per measurement, 1 thread
Warning: PyTorch was not built with debug symbols.
Source information may be limited. Rebuild with
REL_WITH_DEB_INFO=1 for more detailed results.
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.CallgrindStats object at 0x7fb10400d208>
cpp_lib.batched_dot_mul_sum_v1(x, x)
setup:
import cpp_lib
x = torch.randn(2, 2)
All Noisy symbols removed
Instructions: 2378978 2378978
Baseline: 4367 4367
100 runs per measurement, 1 thread
Warning: PyTorch was not built with debug symbols.
Source information may be limited. Rebuild with
REL_WITH_DEB_INFO=1 for more detailed results.
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0x7fb1000ab358>
86 ???:0x000000000020d9e0
56 ???:0x000000000020db10
-1100 pybind11::cpp_function::initialize<wrap_pybind_function_impl_<at::Tensor ... r (&)(...), std::integer_sequence<unsigned long, 0ul, 1ul>)::{lambda(...)
-1600 ???:wrap_pybind_function_impl_<at::Tensor (&)(...), 0ul, 1ul>(at::Tensor (&)(...), std::integer_sequence<unsigned long, 0ul, 1ul>)::{lambda(...)
-5200 ???:c10::intrusive_ptr<c10::TensorImpl, c10::UndefinedTensorImpl>::reset_()
-5935 ???:0x000000000022c0e0
Total: -13693