注意
点击此处下载完整的示例代码
PyTorch: optim¶
创建于:2020 年 12 月 03 日 | 最后更新:2020 年 12 月 03 日 | 最后验证:未验证
一个三阶多项式,通过最小化平方欧几里得距离,训练以从 \(-\pi\) 到 \(pi\) 预测 \(y=\sin(x)\)。
此实现使用 PyTorch 的 nn 包来构建网络。
我们没有像以前那样手动更新模型的权重,而是使用 optim 包来定义一个优化器,该优化器将为我们更新权重。optim 包定义了许多常用于深度学习的优化算法,包括 SGD+momentum、RMSProp、Adam 等。
import torch
import math
# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)
# Prepare the input tensor (x, x^2, x^3).
p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)
# Use the nn package to define our model and loss function.
model = torch.nn.Sequential(
torch.nn.Linear(3, 1),
torch.nn.Flatten(0, 1)
)
loss_fn = torch.nn.MSELoss(reduction='sum')
# Use the optim package to define an Optimizer that will update the weights of
# the model for us. Here we will use RMSprop; the optim package contains many other
# optimization algorithms. The first argument to the RMSprop constructor tells the
# optimizer which Tensors it should update.
learning_rate = 1e-3
optimizer = torch.optim.RMSprop(model.parameters(), lr=learning_rate)
for t in range(2000):
# Forward pass: compute predicted y by passing x to the model.
y_pred = model(xx)
# Compute and print loss.
loss = loss_fn(y_pred, y)
if t % 100 == 99:
print(t, loss.item())
# Before the backward pass, use the optimizer object to zero all of the
# gradients for the variables it will update (which are the learnable
# weights of the model). This is because by default, gradients are
# accumulated in buffers( i.e, not overwritten) whenever .backward()
# is called. Checkout docs of torch.autograd.backward for more details.
optimizer.zero_grad()
# Backward pass: compute gradient of the loss with respect to model
# parameters
loss.backward()
# Calling the step function on an Optimizer makes an update to its
# parameters
optimizer.step()
linear_layer = model[0]
print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3')
脚本的总运行时间: ( 0 分钟 0.000 秒)