• 教程 >
  • 使用 DDP 进行多 GPU 训练
快捷方式

简介 || 什么是 DDP || 单节点多 GPU 训练 || 容错 || 多节点训练 || minGPT 训练

使用 DDP 进行多 GPU 训练

作者:Suraj Subramanian

您将学到什么
  • 如何通过 DDP 将单 GPU 训练脚本迁移到多 GPU

  • 设置分布式进程组

  • 在分布式环境中保存和加载模型

查看本教程中使用的代码,位于 GitHub

先决条件
  • DDP 工作原理 的高级概述

  • 具有多个 GPU 的机器(本教程使用 AWS p3.8xlarge 实例)

  • PyTorch 安装 并带有 CUDA

按照以下视频进行操作,或在 youtube 上进行操作。

之前的教程 中,我们对 DDP 的工作原理进行了高级概述;现在我们来看看如何在代码中使用 DDP。在本教程中,我们从一个单 GPU 训练脚本开始,并将该脚本迁移到在单个节点上的 4 个 GPU 上运行。在此过程中,我们将讨论分布式训练中的重要概念,并在我们的代码中实现这些概念。

注意

如果您的模型包含任何 BatchNorm 层,则需要将其转换为 SyncBatchNorm 以同步 BatchNorm 层在副本之间的运行统计信息。

使用辅助函数 torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) 将模型中的所有 BatchNorm 层转换为 SyncBatchNorm

single_gpu.pymultigpu.py 的差异

这些是您通常对单 GPU 训练脚本进行的更改,以启用 DDP。

导入

  • torch.multiprocessing 是围绕 Python 原生多处理的 PyTorch 包装器。

  • 分布式进程组包含所有可以相互通信和同步的进程。

import torch
import torch.nn.functional as F
from utils import MyTrainDataset

+ import torch.multiprocessing as mp
+ from torch.utils.data.distributed import DistributedSampler
+ from torch.nn.parallel import DistributedDataParallel as DDP
+ from torch.distributed import init_process_group, destroy_process_group
+ import os

构建进程组

  • 首先,在初始化进程组之前,调用 set_device,它设置每个进程的默认 GPU。这对于防止 GPU:0 上的挂起或过度的内存使用至关重要。

  • 进程组可以通过 TCP(默认)或从共享文件系统初始化。有关更多信息,请阅读 进程组初始化

  • init_process_group 初始化分布式进程组。

  • 有关更多信息,请阅读 选择 DDP 后端

+ def ddp_setup(rank: int, world_size: int):
+   """
+   Args:
+       rank: Unique identifier of each process
+      world_size: Total number of processes
+   """
+   os.environ["MASTER_ADDR"] = "localhost"
+   os.environ["MASTER_PORT"] = "12355"
+   torch.cuda.set_device(rank)
+   init_process_group(backend="nccl", rank=rank, world_size=world_size)

构建 DDP 模型

- self.model = model.to(gpu_id)
+ self.model = DDP(model, device_ids=[gpu_id])

分配输入数据

  • DistributedSampler 将输入数据分成块,分布到所有分布式进程。

  • 每个进程将接收一个包含 32 个样本的输入批次;有效批次大小为 32 * nprocs,或者在使用 4 个 GPU 时为 128。

train_data = torch.utils.data.DataLoader(
    dataset=train_dataset,
    batch_size=32,
-   shuffle=True,
+   shuffle=False,
+   sampler=DistributedSampler(train_dataset),
)
  • 在每个 epoch 的开始调用 DistributedSampler 上的 set_epoch() 方法对于使跨多个 epoch 的混洗正常工作是必要的。否则,在每个 epoch 中将使用相同的排序。

def _run_epoch(self, epoch):
    b_sz = len(next(iter(self.train_data))[0])
+   self.train_data.sampler.set_epoch(epoch)
    for source, targets in self.train_data:
      ...
      self._run_batch(source, targets)

保存模型检查点

  • 我们只需要从一个进程保存模型检查点。如果没有这个条件,每个进程都会保存其相同模式的副本。有关使用 DDP 保存和加载模型的更多信息,请阅读 此处

- ckp = self.model.state_dict()
+ ckp = self.model.module.state_dict()
...
...
- if epoch % self.save_every == 0:
+ if self.gpu_id == 0 and epoch % self.save_every == 0:
  self._save_checkpoint(epoch)

警告

集体调用 是在所有分布式进程上运行的函数,它们用于将某些状态或值收集到特定进程。集体调用要求所有等级都运行集体代码。在本例中,_save_checkpoint 不应包含任何集体调用,因为它仅在 rank:0 进程上运行。如果您需要进行任何集体调用,它应该在 if self.gpu_id == 0 检查之前。

运行分布式训练作业

  • 包括新的参数 rank(替换 device)和 world_size

  • rank 在调用 mp.spawn 时由 DDP 自动分配。

  • world_size 是整个训练作业中的进程数量。对于 GPU 训练,这对应于正在使用的 GPU 数量,每个进程都在专用的 GPU 上工作。

- def main(device, total_epochs, save_every):
+ def main(rank, world_size, total_epochs, save_every):
+  ddp_setup(rank, world_size)
   dataset, model, optimizer = load_train_objs()
   train_data = prepare_dataloader(dataset, batch_size=32)
-  trainer = Trainer(model, train_data, optimizer, device, save_every)
+  trainer = Trainer(model, train_data, optimizer, rank, save_every)
   trainer.train(total_epochs)
+  destroy_process_group()

if __name__ == "__main__":
   import sys
   total_epochs = int(sys.argv[1])
   save_every = int(sys.argv[2])
-  device = 0      # shorthand for cuda:0
-  main(device, total_epochs, save_every)
+  world_size = torch.cuda.device_count()
+  mp.spawn(main, args=(world_size, total_epochs, save_every,), nprocs=world_size)

进一步阅读

文档

访问 PyTorch 的全面开发人员文档

查看文档

教程

获取针对初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源