• 教程 >
  • 可选:数据并行
快捷方式

可选:数据并行

作者: Sung KimJenny Kang

在本教程中,我们将学习如何使用 DataParallel 使用多个 GPU。

使用 PyTorch 使用 GPU 非常容易。您可以将模型放在 GPU 上

然后,您可以将所有张量复制到 GPU 上

mytensor = my_tensor.to(device)

请注意,仅仅调用 my_tensor.to(device) 会在 GPU 上返回 my_tensor 的新副本,而不是重写 my_tensor。您需要将其分配给新的张量并在 GPU 上使用该张量。

在多个 GPU 上执行前向和反向传播很自然。但是,Pytorch 默认情况下只使用一个 GPU。您可以通过使用 DataParallel 使模型并行运行,轻松地在多个 GPU 上运行操作

这就是本教程的核心。我们将在下面更详细地探讨它。

导入和参数

导入 PyTorch 模块并定义参数。

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

# Parameters and DataLoaders
input_size = 5
output_size = 2

batch_size = 30
data_size = 100

设备

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

虚拟数据集

创建一个虚拟(随机)数据集。您只需要实现getitem方法。

class RandomDataset(Dataset):

    def __init__(self, size, length):
        self.len = length
        self.data = torch.randn(length, size)

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return self.len

rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
                         batch_size=batch_size, shuffle=True)

简单模型

在本演示中,我们的模型接收一个输入,执行线性运算,并输出结果。但是,您可以将 DataParallel 应用于任何模型(CNN、RNN、Capsule Net 等)。

我们在模型中添加了一个打印语句,用于监控输入和输出张量的尺寸。请注意批次等级 0 的输出内容。

class Model(nn.Module):
    # Our model

    def __init__(self, input_size, output_size):
        super(Model, self).__init__()
        self.fc = nn.Linear(input_size, output_size)

    def forward(self, input):
        output = self.fc(input)
        print("\tIn Model: input size", input.size(),
              "output size", output.size())

        return output

创建模型和 DataParallel

这是本教程的核心部分。首先,我们需要创建一个模型实例,并检查是否有多个 GPU。如果有多个 GPU,可以使用 nn.DataParallel 封装模型。然后可以使用 model.to(device) 将模型放到 GPU 上。

model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
  print("Let's use", torch.cuda.device_count(), "GPUs!")
  # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
  model = nn.DataParallel(model)

model.to(device)
Let's use 4 GPUs!

DataParallel(
  (module): Model(
    (fc): Linear(in_features=5, out_features=2, bias=True)
  )
)

运行模型

现在我们可以看到输入和输出张量的尺寸。

for data in rand_loader:
    input = data.to(device)
    output = model(input)
    print("Outside: input size", input.size(),
          "output_size", output.size())
        In Model: input size torch.Size([6, 5]) output size torch.Size([6, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/linear.py:125: UserWarning:

Attempting to run cuBLAS, but there was no current CUDA context! Attempting to set the primary context... (Triggered internally at ../aten/src/ATen/cuda/CublasHandlePool.cpp:135.)

        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([6, 5]) output size torch.Size([6, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([6, 5]) output size torch.Size([6, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([3, 5]) output size torch.Size([3, 2])
        In Model: input size torch.Size([3, 5]) output size torch.Size([3, 2])
        In Model: input size torch.Size([3, 5]) output size torch.Size([3, 2])
        In Model: input size torch.Size([1, 5]) output size torch.Size([1, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

结果

如果您的系统没有 GPU 或只有一块 GPU,当我们批处理 30 个输入和 30 个输出时,模型预期会接收 30 个输入并输出 30 个结果。但是,如果您的系统有多个 GPU,您将看到类似的结果。

2 个 GPU

如果您有 2 个 GPU,您将看到以下输出。

# on 2 GPUs
Let's use 2 GPUs!
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
    In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

3 个 GPU

如果您有 3 个 GPU,您将看到以下输出。

Let's use 3 GPUs!
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

8 个 GPU

如果您有 8 个 GPU,您将看到以下输出。

Let's use 8 GPUs!
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

总结

DataParallel 会自动分割您的数据,并将作业指令发送到多个 GPU 上的多个模型。每个模型完成其工作后,DataParallel 会收集并合并结果,然后返回给您。

如需了解更多信息,请查看 https://pytorch.ac.cn/tutorials/beginner/former_torchies/parallelism_tutorial.html

脚本的总运行时间: ( 0 分钟 2.175 秒)

由 Sphinx-Gallery 生成的图库

文档

访问 PyTorch 的全面开发人员文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的答案

查看资源