torch.cumulative_trapezoid¶
- torch.cumulative_trapezoid(y, x=None, *, dx=None, dim=-1) Tensor ¶
沿
dim
累积计算梯形法则。默认情况下,假设元素之间的间距为 1,但可以使用dx
指定不同的常数间距,并且可以使用x
指定沿dim
的任意间距。有关更多详细信息,请阅读
torch.trapezoid()
。此函数与torch.trapezoid()
之间的区别在于,torch.trapezoid()
为每个积分返回一个值,而此函数为积分内的每个间距返回一个累积值。这类似于.sum返回一个值而.cumsum返回累积和的方式。- 参数
- 关键字参数
示例
>>> # Cumulatively computes the trapezoidal rule in 1D, spacing is implicitly 1. >>> y = torch.tensor([1, 5, 10]) >>> torch.cumulative_trapezoid(y) tensor([3., 10.5]) >>> # Computes the same trapezoidal rule directly up to each element to verify >>> (1 + 5) / 2 3.0 >>> (1 + 10 + 10) / 2 10.5 >>> # Cumulatively computes the trapezoidal rule in 1D with constant spacing of 2 >>> # NOTE: the result is the same as before, but multiplied by 2 >>> torch.cumulative_trapezoid(y, dx=2) tensor([6., 21.]) >>> # Cumulatively computes the trapezoidal rule in 1D with arbitrary spacing >>> x = torch.tensor([1, 3, 6]) >>> torch.cumulative_trapezoid(y, x) tensor([6., 28.5]) >>> # Computes the same trapezoidal rule directly up to each element to verify >>> ((3 - 1) * (1 + 5)) / 2 6.0 >>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2 28.5 >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 matrix >>> y = torch.arange(9).reshape(3, 3) tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> torch.cumulative_trapezoid(y) tensor([[ 0.5, 2.], [ 3.5, 8.], [ 6.5, 14.]]) >>> # Cumulatively computes the trapezoidal rule for each column of the matrix >>> torch.cumulative_trapezoid(y, dim=0) tensor([[ 1.5, 2.5, 3.5], [ 6.0, 8.0, 10.0]]) >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with the same arbitrary spacing >>> y = torch.ones(3, 3) >>> x = torch.tensor([1, 3, 6]) >>> torch.cumulative_trapezoid(y, x) tensor([[2., 5.], [2., 5.], [2., 5.]]) >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with different arbitrary spacing per row >>> y = torch.ones(3, 3) >>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]]) >>> torch.cumulative_trapezoid(y, x) tensor([[1., 2.], [2., 4.], [3., 6.]])