AOTInductor 精简器¶
在使用 AOT Inductor API(例如 torch._inductor.aoti_compile_and_package
、torch._indcutor.aoti_load_package
)或在某些输入上运行 aoti_load_package
加载的模型时,如果遇到错误,可以使用 AOTInductor 精简器创建一个最小的 nn.Module 来重现该错误,方法是将 from torch._inductor import config; config.aot_inductor.dump_aoti_minifier = True
设置为 True。
概括地说,使用精简器有两个步骤
设置
from torch._inductor import config; config.aot_inductor.dump_aoti_minifier = True
或设置环境变量DUMP_AOTI_MINIFIER=1
。然后运行出错的脚本,将生成一个minifier_launcher.py
脚本。可以通过将torch._dynamo.config.debug_dir_root
设置为有效的目录名来配置输出目录。运行
minifier_launcher.py
脚本。如果精简器成功运行,它将在repro.py
中生成可运行的 Python 代码,该代码可以精确地重现错误。
示例代码¶
以下是示例代码,它将产生一个错误,因为我们使用 torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = "compile_error"
在 relu 上注入了一个错误。
import torch
from torch._inductor import config as inductor_config
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(10, 16)
self.relu = torch.nn.ReLU()
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.sigmoid(x)
return x
inductor_config.aot_inductor.dump_aoti_minifier = True
torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = "compile_error"
with torch.no_grad():
model = Model().to("cuda")
example_inputs = (torch.randn(8, 10).to("cuda"),)
ep = torch.export.export(model, example_inputs)
package_path = torch._inductor.aoti_compile_and_package(ep)
compiled_model = torch._inductor.aoti_load_package(package_path)
result = compiled_model(*example_inputs)
上述代码生成以下错误
RuntimeError: Failed to import /tmp/torchinductor_shangdiy/fr/cfrlf4smkwe4lub4i4cahkrb3qiczhf7hliqqwpewbw3aplj5g3s.py
SyntaxError: invalid syntax (cfrlf4smkwe4lub4i4cahkrb3qiczhf7hliqqwpewbw3aplj5g3s.py, line 29)
这是因为我们在 relu 上注入了一个错误,因此生成的 triton kernel 如下所示。注意,我们这里是 compile error!
而不是 relu
,所以我们得到了一个 SyntaxError
。
@triton.jit
def triton_poi_fused_addmm_relu_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = compile error!
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
由于我们设置了 torch._inductor.config.aot_inductor.dump_aoti_minifier=True
,我们还会看到一条附加行,指示 minifier_launcher.py
已写入的位置。可以通过将 torch._dynamo.config.debug_dir_root
设置为有效的目录名来配置输出目录。
W1031 16:21:08.612000 2861654 pytorch/torch/_dynamo/debug_utils.py:279] Writing minified repro to:
W1031 16:21:08.612000 2861654 pytorch/torch/_dynamo/debug_utils.py:279] /data/users/shangdiy/pytorch/torch_compile_debug/run_2024_10_31_16_21_08_602433-pid_2861654/minifier/minifier_launcher.py
精简器启动器¶
的 minifier_launcher.py
文件包含以下代码。exported_program
包含 torch._inductor.aoti_compile_and_package
的输入。command='minify'
参数表示脚本将运行精简器来创建一个最小的图模块(graph module),以重现错误。或者,您可以将 command='run'
用于仅编译、加载和运行加载的模型(不运行精简器)。
import torch
import torch._inductor.inductor_prims
import torch._dynamo.config
import torch._inductor.config
import torch._functorch.config
import torch.fx.experimental._config
torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = 'compile_error'
torch._inductor.config.aot_inductor.dump_aoti_minifier = True
isolate_fails_code_str = None
# torch version: 2.6.0a0+gitcd9c6e9
# torch cuda version: 12.0
# torch git version: cd9c6e9408dd79175712223895eed36dbdc84f84
# CUDA Info:
# nvcc: NVIDIA (R) Cuda compiler driver
# Copyright (c) 2005-2023 NVIDIA Corporation
# Built on Fri_Jan__6_16:45:21_PST_2023
# Cuda compilation tools, release 12.0, V12.0.140
# Build cuda_12.0.r12.0/compiler.32267302_0
# GPU Hardware Info:
# NVIDIA PG509-210 : 8
exported_program = torch.export.load('/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_06_13_52_35_711642-pid_3567062/minifier/checkpoints/exported_program.pt2')
# print(exported_program.graph)
config_patches={}
if __name__ == '__main__':
from torch._dynamo.repro.aoti import run_repro
with torch.no_grad():
run_repro(exported_program, config_patches=config_patches, accuracy=False, command='minify', save_dir='/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_06_13_52_35_711642-pid_3567062/minifier/checkpoints', check_str=None)
假设我们保留了 command='minify'
选项并运行脚本,我们将获得以下输出
...
W1031 16:48:08.938000 3598491 torch/_dynamo/repro/aoti.py:89] Writing checkpoint with 3 nodes to /data/users/shangdiy/pytorch/torch_compile_debug/run_2024_10_31_16_48_02_720863-pid_3598491/minifier/checkpoints/3.py
W1031 16:48:08.975000 3598491 torch/_dynamo/repro/aoti.py:101] Copying repro file for convenience to /data/users/shangdiy/pytorch/repro.py
Wrote minimal repro out to repro.py
如果在运行 minifier_launcher.py
时遇到 AOTIMinifierError
错误,请在此处报告 bug。
精简结果¶
的 repro.py
看起来是这样的。注意,导出的程序(exported program)打印在文件的顶部,它只包含 relu 节点。精简器成功地将图简化到了引发错误的算子。
# from torch.nn import *
# class Repro(torch.nn.Module):
# def __init__(self) -> None:
# super().__init__()
# def forward(self, linear):
# relu = torch.ops.aten.relu.default(linear); linear = None
# return (relu,)
import torch
from torch import tensor, device
import torch.fx as fx
from torch._dynamo.testing import rand_strided
from math import inf
import torch._inductor.inductor_prims
import torch._dynamo.config
import torch._inductor.config
import torch._functorch.config
import torch.fx.experimental._config
torch._inductor.config.generate_intermediate_hooks = True
torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = 'compile_error'
torch._inductor.config.aot_inductor.dump_aoti_minifier = True
isolate_fails_code_str = None
# torch version: 2.6.0a0+gitcd9c6e9
# torch cuda version: 12.0
# torch git version: cd9c6e9408dd79175712223895eed36dbdc84f84
# CUDA Info:
# nvcc: NVIDIA (R) Cuda compiler driver
# Copyright (c) 2005-2023 NVIDIA Corporation
# Built on Fri_Jan__6_16:45:21_PST_2023
# Cuda compilation tools, release 12.0, V12.0.140
# Build cuda_12.0.r12.0/compiler.32267302_0
# GPU Hardware Info:
# NVIDIA PG509-210 : 8
exported_program = torch.export.load('/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_25_13_59_33_102283-pid_3658904/minifier/checkpoints/exported_program.pt2')
# print(exported_program.graph)
config_patches={'aot_inductor.package': True}
if __name__ == '__main__':
from torch._dynamo.repro.aoti import run_repro
with torch.no_grad():
run_repro(exported_program, config_patches=config_patches, accuracy=False, command='run', save_dir='/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_25_13_59_33_102283-pid_3658904/minifier/checkpoints', check_str=None)