快捷方式

AOTInductor Minifier

如果您在使用 AOT Inductor API(例如 torch._inductor.aoti_compile_and_package, torch._indcutor.aoti_load_package)时遇到错误,或者在某些输入上运行 aoti_load_package 加载的模型时遇到错误,您可以使用 AOTInductor Minifier 创建一个最小的 nn.Module 来重现错误,方法是设置 from torch._inductor import config; config.aot_inductor.dump_aoti_minifier = True

从高层次来看,使用 minifier 分为两个步骤

  • 设置 from torch._inductor import config; config.aot_inductor.dump_aoti_minifier = True 或设置环境变量 DUMP_AOTI_MINIFIER=1。然后,运行报错的脚本将生成一个 minifier_launcher.py 脚本。可以通过将 torch._dynamo.config.debug_dir_root 设置为有效的目录名称来配置输出目录。

  • 运行 minifier_launcher.py 脚本。如果 minifier 成功运行,它将在 repro.py 中生成可运行的 python 代码,该代码会重现完全相同的错误。

代码示例

这是一个示例代码,它将生成一个错误,因为我们在 relu 上注入了一个错误,通过 torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = "compile_error"

import torch
from torch._inductor import config as inductor_config

class Model(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = torch.nn.Linear(10, 16)
        self.relu = torch.nn.ReLU()
        self.sigmoid = torch.nn.Sigmoid()

    def forward(self, x):
        x = self.fc1(x)
        x = self.relu(x)
        x = self.sigmoid(x)
        return x


inductor_config.aot_inductor.dump_aoti_minifier = True
torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = "compile_error"

with torch.no_grad():
    model = Model().to("cuda")
    example_inputs = (torch.randn(8, 10).to("cuda"),)
    ep = torch.export.export(model, example_inputs)
    package_path = torch._inductor.aoti_compile_and_package(ep)
    compiled_model = torch._inductor.aoti_load_package(package_path)
    result = compiled_model(*example_inputs)

上面的代码生成以下错误

RuntimeError: Failed to import /tmp/torchinductor_shangdiy/fr/cfrlf4smkwe4lub4i4cahkrb3qiczhf7hliqqwpewbw3aplj5g3s.py
SyntaxError: invalid syntax (cfrlf4smkwe4lub4i4cahkrb3qiczhf7hliqqwpewbw3aplj5g3s.py, line 29)

这是因为我们在 relu 上注入了一个错误,因此生成的 triton 内核如下所示。请注意,我们有 compile error! 而不是 relu,因此我们得到一个 SyntaxError

@triton.jit
def triton_poi_fused_addmm_relu_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
    xnumel = 128
    xoffset = tl.program_id(0) * XBLOCK
    xindex = xoffset + tl.arange(0, XBLOCK)[:]
    xmask = xindex < xnumel
    x2 = xindex
    x0 = xindex % 16
    tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
    tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
    tmp2 = tmp0 + tmp1
    tmp3 = compile error!
    tmp4 = tl.sigmoid(tmp3)
    tl.store(in_out_ptr0 + (x2), tmp4, xmask)

由于我们设置了 torch._inductor.config.aot_inductor.dump_aoti_minifier=True,我们还会看到一行额外的指示,指示 minifier_launcher.py 已写入的位置。可以通过将 torch._dynamo.config.debug_dir_root 设置为有效的目录名称来配置输出目录。

W1031 16:21:08.612000 2861654 pytorch/torch/_dynamo/debug_utils.py:279] Writing minified repro to:
W1031 16:21:08.612000 2861654 pytorch/torch/_dynamo/debug_utils.py:279] /data/users/shangdiy/pytorch/torch_compile_debug/run_2024_10_31_16_21_08_602433-pid_2861654/minifier/minifier_launcher.py

Minifier 启动器

minifier_launcher.py 文件包含以下代码。exported_program 包含 torch._inductor.aoti_compile_and_package 的输入。command='minify' 参数意味着脚本将运行 minifier 以创建一个最小的图模块来重现错误。或者,您可以设置使用 command='run' 来仅编译、加载和运行加载的模型(而不运行 minifier)。

import torch
import torch._inductor.inductor_prims

import torch._dynamo.config
import torch._inductor.config
import torch._functorch.config
import torch.fx.experimental._config

torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = 'compile_error'
torch._inductor.config.aot_inductor.dump_aoti_minifier = True




isolate_fails_code_str = None



# torch version: 2.6.0a0+gitcd9c6e9
# torch cuda version: 12.0
# torch git version: cd9c6e9408dd79175712223895eed36dbdc84f84


# CUDA Info:
# nvcc: NVIDIA (R) Cuda compiler driver
# Copyright (c) 2005-2023 NVIDIA Corporation
# Built on Fri_Jan__6_16:45:21_PST_2023
# Cuda compilation tools, release 12.0, V12.0.140
# Build cuda_12.0.r12.0/compiler.32267302_0

# GPU Hardware Info:
# NVIDIA PG509-210 : 8

exported_program = torch.export.load('/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_06_13_52_35_711642-pid_3567062/minifier/checkpoints/exported_program.pt2')
# print(exported_program.graph)
config_patches={}
if __name__ == '__main__':
    from torch._dynamo.repro.aoti import run_repro
    with torch.no_grad():
        run_repro(exported_program, config_patches=config_patches, accuracy=False, command='minify', save_dir='/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_06_13_52_35_711642-pid_3567062/minifier/checkpoints', check_str=None)

假设我们保留了 command='minify' 选项,并运行脚本,我们将得到以下输出

...
W1031 16:48:08.938000 3598491 torch/_dynamo/repro/aoti.py:89] Writing checkpoint with 3 nodes to /data/users/shangdiy/pytorch/torch_compile_debug/run_2024_10_31_16_48_02_720863-pid_3598491/minifier/checkpoints/3.py
W1031 16:48:08.975000 3598491 torch/_dynamo/repro/aoti.py:101] Copying repro file for convenience to /data/users/shangdiy/pytorch/repro.py
Wrote minimal repro out to repro.py

如果您在运行 minifier_launcher.py 时遇到 AOTIMinifierError,请在此处报告错误 here

最小化结果

repro.py 看起来像这样。请注意,导出的程序打印在文件的顶部,它仅包含 relu 节点。minifier 成功地将图简化为引发错误的算子。

# from torch.nn import *
# class Repro(torch.nn.Module):
#     def __init__(self) -> None:
#         super().__init__()



#     def forward(self, linear):
#         relu = torch.ops.aten.relu.default(linear);  linear = None
#         return (relu,)

import torch
from torch import tensor, device
import torch.fx as fx
from torch._dynamo.testing import rand_strided
from math import inf
import torch._inductor.inductor_prims

import torch._dynamo.config
import torch._inductor.config
import torch._functorch.config
import torch.fx.experimental._config

torch._inductor.config.generate_intermediate_hooks = True
torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = 'compile_error'
torch._inductor.config.aot_inductor.dump_aoti_minifier = True




isolate_fails_code_str = None



# torch version: 2.6.0a0+gitcd9c6e9
# torch cuda version: 12.0
# torch git version: cd9c6e9408dd79175712223895eed36dbdc84f84


# CUDA Info:
# nvcc: NVIDIA (R) Cuda compiler driver
# Copyright (c) 2005-2023 NVIDIA Corporation
# Built on Fri_Jan__6_16:45:21_PST_2023
# Cuda compilation tools, release 12.0, V12.0.140
# Build cuda_12.0.r12.0/compiler.32267302_0

# GPU Hardware Info:
# NVIDIA PG509-210 : 8


exported_program = torch.export.load('/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_25_13_59_33_102283-pid_3658904/minifier/checkpoints/exported_program.pt2')
# print(exported_program.graph)
config_patches={'aot_inductor.package': True}
if __name__ == '__main__':
    from torch._dynamo.repro.aoti import run_repro
    with torch.no_grad():
        run_repro(exported_program, config_patches=config_patches, accuracy=False, command='run', save_dir='/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_25_13_59_33_102283-pid_3658904/minifier/checkpoints', check_str=None)

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取面向初学者和高级开发者的深入教程

查看教程

资源

查找开发资源并获得问题解答

查看资源