快捷方式

LBFGS

class torch.optim.LBFGS(params, lr=1, max_iter=20, max_eval=None, tolerance_grad=1e-07, tolerance_change=1e-09, history_size=100, line_search_fn=None)[source][source]

实现 L-BFGS 算法。

主要受 minFunc 启发。

警告

该优化器不支持按参数设置选项和参数组(只能有一个参数组)。

警告

目前,所有参数必须位于同一设备上。未来将改进此限制。

注意

这是一个内存密集型优化器(需要额外的 param_bytes * (history_size + 1) 字节)。如果内存不足,请尝试减小历史大小,或使用其他算法。

参数
  • params (iterable) – 要优化的参数的可迭代对象。参数必须是实数。

  • lr (float, optional) – 学习率(默认值:1)

  • max_iter (int, optional) – 每个优化步骤的最大迭代次数(默认值:20)

  • max_eval (int, optional) – 每个优化步骤的最大函数评估次数(默认值:max_iter * 1.25)。

  • tolerance_grad (float, optional) – 一阶最优性的终止容差(默认值:1e-7)。

  • tolerance_change (float, optional) – 函数值/参数变化的终止容差(默认值:1e-9)。

  • history_size (int, optional) – 更新历史大小(默认值:100)。

  • line_search_fn (str, optional) – 可以是 ‘strong_wolfe’ 或 None(默认值:None)。

add_param_group(param_group)[source]

Optimizerparam_groups 添加一个参数组。

这在微调预训练网络时非常有用,因为可以使冻结的层可训练,并在训练过程中添加到 Optimizer 中。

参数

param_group (dict) – 指定应优化哪些 Tensor 以及组特定的优化选项。

load_state_dict(state_dict)[source]

加载优化器状态。

参数

state_dict (dict) – 优化器状态。应为调用 state_dict() 返回的对象。

注意

参数的名称(如果它们在 state_dict() 的每个参数组的 “param_names” 键下存在)不会影响加载过程。对于自定义情况(例如加载的状态字典中的参数与优化器中初始化的参数不同),应实现自定义的 register_load_state_dict_pre_hook 以相应地调整加载的字典。如果在加载的状态字典 param_groups 中存在 param_names,它们将被保存并覆盖优化器状态中当前存在的名称。如果加载的状态字典中不存在 param_names,则优化器的 param_names 将保持不变。

register_load_state_dict_post_hook(hook, prepend=False)[source]

注册一个 load_state_dict 后置钩子,该钩子将在调用 load_state_dict() 后被调用。其签名应如下所示

hook(optimizer) -> None

参数 optimizer 是正在使用的优化器实例。

该钩子将在对 self 调用 load_state_dict 后使用参数 self 调用。注册的钩子可用于在 load_state_dict 加载 state_dict 后执行后处理。

参数
  • hook (Callable) – 要注册的用户定义钩子。

  • prepend (bool) – 如果为 True,提供的后置 hook 将在所有已注册的 load_state_dict 后置钩子之前触发。否则,提供的 hook 将在所有已注册的后置钩子之后触发。(默认值:False)

返回

一个句柄,可以通过调用 handle.remove() 来移除添加的钩子

返回类型

torch.utils.hooks.RemoveableHandle

register_load_state_dict_pre_hook(hook, prepend=False)[source]

注册一个 load_state_dict 前置钩子,该钩子将在调用 load_state_dict() 前被调用。其签名应如下所示

hook(optimizer, state_dict) -> state_dict or None

参数 optimizer 是正在使用的优化器实例,参数 state_dict 是用户传递给 load_state_dictstate_dict 的浅拷贝。该钩子可以原地修改 state_dict,也可以选择返回一个新的 state_dict。如果返回了一个 state_dict,它将被用于加载到优化器中。

该钩子将在对 self 调用 load_state_dict 前使用参数 selfstate_dict 调用。注册的钩子可用于在调用 load_state_dict 之前执行预处理。

参数
  • hook (Callable) – 要注册的用户定义钩子。

  • prepend (bool) – 如果为 True,提供的前置 hook 将在所有已注册的 load_state_dict 前置钩子之前触发。否则,提供的前置 hook 将在所有已注册的前置钩子之后触发。(默认值:False)

返回

一个句柄,可以通过调用 handle.remove() 来移除添加的钩子

返回类型

torch.utils.hooks.RemoveableHandle

register_state_dict_post_hook(hook, prepend=False)[source]

注册一个 state dict 后置钩子,该钩子将在调用 state_dict() 后被调用。

其签名应如下所示

hook(optimizer, state_dict) -> state_dict or None

该钩子将在对 self 生成一个 state_dict 后使用参数 selfstate_dict 调用。该钩子可以原地修改 state_dict,也可以选择返回一个新的 state_dict。注册的钩子可用于在 state_dict 返回之前对其执行后处理。

参数
  • hook (Callable) – 要注册的用户定义钩子。

  • prepend (bool) – 如果为 True,提供的后置 hook 将在所有已注册的 state_dict 后置钩子之前触发。否则,提供的 hook 将在所有已注册的后置钩子之后触发。(默认值:False)

返回

一个句柄,可以通过调用 handle.remove() 来移除添加的钩子

返回类型

torch.utils.hooks.RemoveableHandle

register_state_dict_pre_hook(hook, prepend=False)[source]

注册一个 state dict 前置钩子,该钩子将在调用 state_dict() 前被调用。

其签名应如下所示

hook(optimizer) -> None

参数 optimizer 是正在使用的优化器实例。该钩子将在对 self 调用 state_dict 前使用参数 self 调用。注册的钩子可用于在调用 state_dict 之前执行预处理。

参数
  • hook (Callable) – 要注册的用户定义钩子。

  • prepend (bool) – 如果为 True,提供的前置 hook 将在所有已注册的 state_dict 前置钩子之前触发。否则,提供的前置 hook 将在所有已注册的前置钩子之后触发。(默认值:False)

返回

一个句柄,可以通过调用 handle.remove() 来移除添加的钩子

返回类型

torch.utils.hooks.RemoveableHandle

register_step_post_hook(hook)[source]

注册一个优化器步进后置钩子,该钩子将在优化器步进后被调用。

其签名应如下所示

hook(optimizer, args, kwargs) -> None

参数 optimizer 是正在使用的优化器实例。

参数

hook (Callable) – 要注册的用户定义钩子。

返回

一个句柄,可以通过调用 handle.remove() 来移除添加的钩子

返回类型

torch.utils.hooks.RemovableHandle

register_step_pre_hook(hook)[source]

注册一个优化器步进前置钩子,该钩子将在优化器步进前被调用。

其签名应如下所示

hook(optimizer, args, kwargs) -> None or modified args and kwargs

参数 optimizer 是正在使用的优化器实例。如果 args 和 kwargs 被前置钩子修改,则转换后的值将作为包含 new_args 和 new_kwargs 的元组返回。

参数

hook (Callable) – 要注册的用户定义钩子。

返回

一个句柄,可以通过调用 handle.remove() 来移除添加的钩子

返回类型

torch.utils.hooks.RemovableHandle

state_dict()[source]

dict 形式返回优化器状态。

它包含两个条目

  • state: 一个 Dict,包含当前的优化状态。其内容

    在不同的优化器类之间有所不同,但具有一些共同特征。例如,状态按参数保存,而参数本身不保存。state 是一个字典,将参数 ID 映射到包含每个参数对应状态的 Dict。

  • param_groups: 一个 List,包含所有参数组,其中每个

    参数组都是一个 Dict。每个参数组包含优化器特定的元数据,例如学习率和权重衰减,以及组中参数的参数 ID 列表。如果参数组使用 named_parameters() 初始化,则名称内容也会保存在状态字典中。

注意:参数 ID 可能看起来像索引,但它们只是将状态与参数组关联的 ID。从 state_dict 加载时,优化器将压缩参数组的 params(int ID)和优化器的 param_groups(实际的 nn.Parameter),以便在没有额外验证的情况下匹配状态。

返回的状态字典可能看起来像这样

{
    'state': {
        0: {'momentum_buffer': tensor(...), ...},
        1: {'momentum_buffer': tensor(...), ...},
        2: {'momentum_buffer': tensor(...), ...},
        3: {'momentum_buffer': tensor(...), ...}
    },
    'param_groups': [
        {
            'lr': 0.01,
            'weight_decay': 0,
            ...
            'params': [0]
            'param_names' ['param0']  (optional)
        },
        {
            'lr': 0.001,
            'weight_decay': 0.5,
            ...
            'params': [1, 2, 3]
            'param_names': ['param1', 'layer.weight', 'layer.bias'] (optional)
        }
    ]
}
返回类型

dict[str, Any]

step(closure)[source][source]

执行单个优化步骤。

参数

closure (Callable) – 一个闭包,用于重新评估模型并返回损失。

zero_grad(set_to_none=True)[source]

重置所有优化过的 torch.Tensor 的梯度。

参数

set_to_none (bool) – 与其设置为零,不如将梯度设置为 None。这通常会降低内存占用,并可适度提升性能。但是,它会改变某些行为。例如:1. 当用户尝试访问梯度并对其执行手动操作时,None 属性或一个充满 0 的 Tensor 会表现不同。2. 如果用户调用 zero_grad(set_to_none=True) 后紧跟着执行反向传播,则对于未接收到梯度的参数,它们的 .grad 保证为 None。3. 如果梯度为 0 或 None,torch.optim 优化器的行为会有所不同(一种情况下它会使用梯度 0 执行步进,另一种情况下它会完全跳过该步)。

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取面向初学者和高级开发者的深度教程

查看教程

资源

查找开发资源并获得问题解答

查看资源