快捷方式

ZeroPad2d

class torch.nn.ZeroPad2d(padding)[源代码]

用零填充输入张量的边界。

对于 N 维填充,请使用 torch.nn.functional.pad()

参数

padding (int, tuple) – 填充的大小。如果为 int,则在所有边界使用相同的填充。如果为 4 元组,则使用 (padding_left\text{padding\_left}, padding_right\text{padding\_right}, padding_top\text{padding\_top}, padding_bottom\text{padding\_bottom})

形状
  • 输入:(N,C,Hin,Win)(N, C, H_{in}, W_{in})(C,Hin,Win)(C, H_{in}, W_{in}).

  • 输出: (N,C,Hout,Wout)(N, C, H_{out}, W_{out})(C,Hout,Wout)(C, H_{out}, W_{out}), 其中

    Hout=Hin+padding_top+padding_bottomH_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}

    Wout=Win+padding_left+padding_rightW_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}

示例

>>> m = nn.ZeroPad2d(2)
>>> input = torch.randn(1, 1, 3, 3)
>>> input
tensor([[[[-0.1678, -0.4418,  1.9466],
          [ 0.9604, -0.4219, -0.5241],
          [-0.9162, -0.5436, -0.6446]]]])
>>> m(input)
tensor([[[[ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
          [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
          [ 0.0000,  0.0000, -0.1678, -0.4418,  1.9466,  0.0000,  0.0000],
          [ 0.0000,  0.0000,  0.9604, -0.4219, -0.5241,  0.0000,  0.0000],
          [ 0.0000,  0.0000, -0.9162, -0.5436, -0.6446,  0.0000,  0.0000],
          [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
          [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000]]]])
>>> # using different paddings for different sides
>>> m = nn.ZeroPad2d((1, 1, 2, 0))
>>> m(input)
tensor([[[[ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
          [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
          [ 0.0000, -0.1678, -0.4418,  1.9466,  0.0000],
          [ 0.0000,  0.9604, -0.4219, -0.5241,  0.0000],
          [ 0.0000, -0.9162, -0.5436, -0.6446,  0.0000]]]])

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取适合初学者和高级开发者的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源