快捷方式

LazyInstanceNorm1d

class torch.nn.LazyInstanceNorm1d(eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, device=None, dtype=None)[source]

一个 torch.nn.InstanceNorm1d 模块,其中 num_features 参数的初始化是延迟的。

num_features 参数的 InstanceNorm1d 是从 input.size(1) 推断出来的。将延迟初始化的属性是 weightbiasrunning_meanrunning_var

有关延迟模块及其限制的更多文档,请查看 torch.nn.modules.lazy.LazyModuleMixin

参数
  • num_featuresCC 来自预期大小为 (N,C,L)(N, C, L)(C,L)(C, L) 的预期输入

  • eps (float) – 添加到分母的值,用于数值稳定性。默认值:1e-5

  • momentum (Optional[float]) – 用于运行均值和运行方差计算的值。默认值:0.1

  • affine (bool) – 布尔值,当设置为 True 时,此模块具有可学习的仿射参数,初始化方式与批归一化相同。默认值:False

  • track_running_stats (bool) – 布尔值,当设置为 True 时,此模块跟踪运行均值和方差,当设置为 False 时,此模块不跟踪此类统计信息,并且始终在训练和评估模式下使用批统计信息。默认值:False

形状
  • 输入: (N,C,L)(N, C, L)(C,L)(C, L)

  • 输出: (N,C,L)(N, C, L)(C,L)(C, L) (与输入形状相同)

cls_to_become

的别名 InstanceNorm1d

文档

访问 PyTorch 的全面的开发者文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的答案

查看资源