快捷方式

torch.kron

torch.kron(input, other, *, out=None) Tensor

计算 inputother 的克罗内克积,记为 \otimes

如果input 是一个形状为(a0×a1××an)(a_0 \times a_1 \times \dots \times a_n) 张量,并且other 是一个形状为(b0×b1××bn)(b_0 \times b_1 \times \dots \times b_n) 张量,则结果将是一个形状为(a0b0×a1b1××anbn)(a_0*b_0 \times a_1*b_1 \times \dots \times a_n*b_n) 张量,其条目如下:

(inputother)k0,k1,,kn=inputi0,i1,,inotherj0,j1,,jn,(\text{input} \otimes \text{other})_{k_0, k_1, \dots, k_n} = \text{input}_{i_0, i_1, \dots, i_n} * \text{other}_{j_0, j_1, \dots, j_n},

其中 kt=itbt+jtk_t = i_t * b_t + j_t 对于 0tn0 \leq t \leq n。如果一个张量的维度少于另一个,则会对其进行扩展,直到其具有相同的维度数量。

支持实值和复值输入。

注意

此函数将克罗内克积的典型定义(针对两个矩阵)推广到两个张量,如上所述。当 input 是一个 (m×n)(m \times n) 矩阵,并且 other 是一个 (p×q)(p \times q) 矩阵时,结果将是一个 (pm×qn)(p*m \times q*n) 块矩阵。

AB=[a11Ba1nBam1BamnB]\mathbf{A} \otimes \mathbf{B}=\begin{bmatrix} a_{11} \mathbf{B} & \cdots & a_{1 n} \mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m 1} \mathbf{B} & \cdots & a_{m n} \mathbf{B} \end{bmatrix}

其中 inputA\mathbf{A}otherB\mathbf{B}.

参数
关键字参数

out (张量, 可选) – 输出张量。如果为 None 则忽略。默认值: None

示例

>>> mat1 = torch.eye(2)
>>> mat2 = torch.ones(2, 2)
>>> torch.kron(mat1, mat2)
tensor([[1., 1., 0., 0.],
        [1., 1., 0., 0.],
        [0., 0., 1., 1.],
        [0., 0., 1., 1.]])

>>> mat1 = torch.eye(2)
>>> mat2 = torch.arange(1, 5).reshape(2, 2)
>>> torch.kron(mat1, mat2)
tensor([[1., 2., 0., 0.],
        [3., 4., 0., 0.],
        [0., 0., 1., 2.],
        [0., 0., 3., 4.]])

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源