快捷方式

TorchScript 内建函数

这是 TorchScript 中可访问的函数和 Tensor 方法的完整参考。

支持的 Tensor 方法

Tensor.__and__(other : number) -> Tensor

Tensor.__and__(other : Tensor) -> Tensor

Tensor.__iand__(other : Tensor) -> Tensor

Tensor.__iand__(other : number) -> Tensor

Tensor.__ilshift__(other : Tensor) -> Tensor

Tensor.__ilshift__(other : number) -> Tensor

Tensor.__ior__(other : Tensor) -> Tensor

Tensor.__ior__(other : number) -> Tensor

Tensor.__irshift__(other : Tensor) -> Tensor

Tensor.__irshift__(other : number) -> Tensor

Tensor.__ixor__(other : Tensor) -> Tensor

Tensor.__ixor__(other : number) -> Tensor

Tensor.__lshift__(other : Tensor) -> Tensor

Tensor.__lshift__(other : number) -> Tensor

Tensor.__lshift__(other : number,
                  out : Tensor) -> Tensor

Tensor.__lshift__(other : Tensor,
                  out : Tensor) -> Tensor

Tensor.__or__(other : Tensor) -> Tensor

Tensor.__or__(other : number) -> Tensor

Tensor.__rshift__(other : Tensor) -> Tensor

Tensor.__rshift__(other : number) -> Tensor

Tensor.__rshift__(other : number,
                  out : Tensor) -> Tensor

Tensor.__rshift__(other : Tensor,
                  out : Tensor) -> Tensor

Tensor.__xor__(other : Tensor) -> Tensor

Tensor.__xor__(other : number) -> Tensor

Tensor.abs() -> Tensor

Tensor.abs(out : Tensor) -> Tensor

Tensor.abs_() -> Tensor

Tensor.absolute() -> Tensor

Tensor.absolute(out : Tensor) -> Tensor

Tensor.absolute_() -> Tensor

Tensor.acos() -> Tensor

Tensor.acos(out : Tensor) -> Tensor

Tensor.acos_() -> Tensor

Tensor.acosh() -> Tensor

Tensor.acosh(out : Tensor) -> Tensor

Tensor.acosh_() -> Tensor

Tensor.add(other : Tensor,
           alpha : number=1) -> Tensor

Tensor.add(other : number,
           alpha : number=1) -> Tensor

Tensor.add(other : Tensor,
           alpha : number=1,
           out : Tensor) -> Tensor

Tensor.add(other : number,
           alpha : number=1,
           out : Tensor) -> Tensor

Tensor.add_(other : Tensor,
            alpha : number=1) -> Tensor

Tensor.add_(other : number,
            alpha : number=1) -> Tensor

Tensor.addbmm(batch1 : Tensor,
              batch2 : Tensor,
              beta : number=1,
              alpha : number=1) -> Tensor

Tensor.addbmm(batch1 : Tensor,
              batch2 : Tensor,
              beta : number=1,
              alpha : number=1,
              out : Tensor) -> Tensor

Tensor.addbmm_(batch1 : Tensor,
               batch2 : Tensor,
               beta : number=1,
               alpha : number=1) -> Tensor

Tensor.addcdiv(tensor1 : Tensor,
               tensor2 : Tensor,
               value : number=1) -> Tensor

Tensor.addcdiv(tensor1 : Tensor,
               tensor2 : Tensor,
               value : number=1,
               out : Tensor) -> Tensor

Tensor.addcdiv_(tensor1 : Tensor,
                tensor2 : Tensor,
                value : number=1) -> Tensor

Tensor.addcmul(tensor1 : Tensor,
               tensor2 : Tensor,
               value : number=1) -> Tensor

Tensor.addcmul(tensor1 : Tensor,
               tensor2 : Tensor,
               value : number=1,
               out : Tensor) -> Tensor

Tensor.addcmul_(tensor1 : Tensor,
                tensor2 : Tensor,
                value : number=1) -> Tensor

Tensor.addmm(mat1 : Tensor,
             mat2 : Tensor,
             beta : number=1,
             alpha : number=1) -> Tensor

Tensor.addmm(mat1 : Tensor,
             mat2 : Tensor,
             beta : number=1,
             alpha : number=1,
             out : Tensor) -> Tensor

Tensor.addmm_(mat1 : Tensor,
              mat2 : Tensor,
              beta : number=1,
              alpha : number=1) -> Tensor

Tensor.addmv(mat : Tensor,
             vec : Tensor,
             beta : number=1,
             alpha : number=1) -> Tensor

Tensor.addmv(mat : Tensor,
             vec : Tensor,
             beta : number=1,
             alpha : number=1,
             out : Tensor) -> Tensor

Tensor.addmv_(mat : Tensor,
              vec : Tensor,
              beta : number=1,
              alpha : number=1) -> Tensor

Tensor.addr(vec1 : Tensor,
            vec2 : Tensor,
            beta : number=1,
            alpha : number=1) -> Tensor

Tensor.addr(vec1 : Tensor,
            vec2 : Tensor,
            beta : number=1,
            alpha : number=1,
            out : Tensor) -> Tensor

Tensor.addr_(vec1 : Tensor,
             vec2 : Tensor,
             beta : number=1,
             alpha : number=1) -> Tensor

Tensor.adjoint() -> Tensor

Tensor.align_as(other : Tensor) -> Tensor

Tensor.align_to(names : List[str]) -> Tensor

Tensor.align_to(order : List[str],
                ellipsis_idx : int) -> Tensor

Tensor.all() -> Tensor

Tensor.all(dim : int,
           keepdim : bool=False) -> Tensor

Tensor.all(dim : Optional[List[int]],
           keepdim : bool=False) -> Tensor

Tensor.all(dim : int,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.all(dim : Optional[List[int]],
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.all(out : Tensor) -> Tensor

Tensor.all(dim : str,
           keepdim : bool=False) -> Tensor

Tensor.all(dim : str,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.allclose(other : Tensor,
                rtol : float=1e-05,
                atol : float=1e-08,
                equal_nan : bool=False) -> bool

Tensor.amax(dim : List[int]=[],
            keepdim : bool=False) -> Tensor

Tensor.amax(dim : List[int]=[],
            keepdim : bool=False,
            out : Tensor) -> Tensor

Tensor.amin(dim : List[int]=[],
            keepdim : bool=False) -> Tensor

Tensor.amin(dim : List[int]=[],
            keepdim : bool=False,
            out : Tensor) -> Tensor

Tensor.aminmax(dim : Optional[int],
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.aminmax(dim : Optional[int],
               keepdim : bool=False,
               min : Tensor,
               max : Tensor) -> Tuple[Tensor, Tensor]

Tensor.angle() -> Tensor

Tensor.angle(out : Tensor) -> Tensor

Tensor.any() -> Tensor

Tensor.any(dim : int,
           keepdim : bool=False) -> Tensor

Tensor.any(dim : Optional[List[int]],
           keepdim : bool=False) -> Tensor

Tensor.any(dim : int,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.any(dim : Optional[List[int]],
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.any(out : Tensor) -> Tensor

Tensor.any(dim : str,
           keepdim : bool=False) -> Tensor

Tensor.any(dim : str,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.arccos() -> Tensor

Tensor.arccos(out : Tensor) -> Tensor

Tensor.arccos_() -> Tensor

Tensor.arccosh() -> Tensor

Tensor.arccosh(out : Tensor) -> Tensor

Tensor.arccosh_() -> Tensor

Tensor.arcsin() -> Tensor

Tensor.arcsin(out : Tensor) -> Tensor

Tensor.arcsin_() -> Tensor

Tensor.arcsinh() -> Tensor

Tensor.arcsinh(out : Tensor) -> Tensor

Tensor.arcsinh_() -> Tensor

Tensor.arctan() -> Tensor

Tensor.arctan(out : Tensor) -> Tensor

Tensor.arctan2(other : Tensor) -> Tensor

Tensor.arctan2(other : Tensor,
               out : Tensor) -> Tensor

Tensor.arctan2_(other : Tensor) -> Tensor

Tensor.arctan_() -> Tensor

Tensor.arctanh() -> Tensor

Tensor.arctanh(out : Tensor) -> Tensor

Tensor.arctanh_() -> Tensor

Tensor.argmax(dim : Optional[int],
              keepdim : bool=False) -> Tensor

Tensor.argmax(dim : Optional[int],
              keepdim : bool=False,
              out : Tensor) -> Tensor

Tensor.argmin(dim : Optional[int],
              keepdim : bool=False) -> Tensor

Tensor.argmin(dim : Optional[int],
              keepdim : bool=False,
              out : Tensor) -> Tensor

Tensor.argsort(dim : int=-1,
               descending : bool=False) -> Tensor

Tensor.argsort(stable : bool,
               dim : int=-1,
               descending : bool=False) -> Tensor

Tensor.argsort(stable : bool,
               dim : int=-1,
               descending : bool=False,
               out : Tensor) -> Tensor

Tensor.argsort(dim : str,
               descending : bool=False) -> Tensor

Tensor.argwhere() -> Tensor

Tensor.as_strided(size : List[int],
                  stride : List[int],
                  storage_offset : Optional[int]) -> Tensor

Tensor.as_strided_(size : List[int],
                   stride : List[int],
                   storage_offset : Optional[int]) -> Tensor

Tensor.as_strided_scatter(src : Tensor,
                          size : List[int],
                          stride : List[int],
                          storage_offset : Optional[int]) -> Tensor

Tensor.as_strided_scatter(src : Tensor,
                          size : List[int],
                          stride : List[int],
                          storage_offset : Optional[int],
                          out : Tensor) -> Tensor

Tensor.asin() -> Tensor

Tensor.asin(out : Tensor) -> Tensor

Tensor.asin_() -> Tensor

Tensor.asinh() -> Tensor

Tensor.asinh(out : Tensor) -> Tensor

Tensor.asinh_() -> Tensor

Tensor.atan() -> Tensor

Tensor.atan(out : Tensor) -> Tensor

Tensor.atan2(other : Tensor) -> Tensor

Tensor.atan2(other : Tensor,
             out : Tensor) -> Tensor

Tensor.atan2_(other : Tensor) -> Tensor

Tensor.atan_() -> Tensor

Tensor.atanh() -> Tensor

Tensor.atanh(out : Tensor) -> Tensor

Tensor.atanh_() -> Tensor

Tensor.backward(gradient : Optional[Tensor],
                retain_graph : Optional[bool],
                create_graph : bool=False) -> Tuple[]

Tensor.baddbmm(batch1 : Tensor,
               batch2 : Tensor,
               beta : number=1,
               alpha : number=1) -> Tensor

Tensor.baddbmm(batch1 : Tensor,
               batch2 : Tensor,
               beta : number=1,
               alpha : number=1,
               out : Tensor) -> Tensor

Tensor.baddbmm_(batch1 : Tensor,
                batch2 : Tensor,
                beta : number=1,
                alpha : number=1) -> Tensor

Tensor.bernoulli(generator : Optional[Generator]) -> Tensor

Tensor.bernoulli(generator : Optional[Generator],
                 out : Tensor) -> Tensor

Tensor.bernoulli(p : float,
                 generator : Optional[Generator]) -> Tensor

Tensor.bernoulli(p : Tensor,
                 generator : Optional[Generator]) -> Tensor

Tensor.bernoulli(p : Tensor,
                 generator : Optional[Generator],
                 out : Tensor) -> Tensor

Tensor.bernoulli(p : float=0.5,
                 generator : Optional[Generator],
                 out : Tensor) -> Tensor

Tensor.bernoulli_(p : Tensor,
                  generator : Optional[Generator]) -> Tensor

Tensor.bernoulli_(p : float=0.5,
                  generator : Optional[Generator]) -> Tensor

Tensor.bincount(weights : Optional[Tensor],
                minlength : int=0) -> Tensor

Tensor.bincount(weights : Optional[Tensor],
                minlength : int=0,
                out : Tensor) -> Tensor

Tensor.bitwise_and(other : Tensor) -> Tensor

Tensor.bitwise_and(other : number) -> Tensor

Tensor.bitwise_and(other : Tensor,
                   out : Tensor) -> Tensor

Tensor.bitwise_and(other : number,
                   out : Tensor) -> Tensor

Tensor.bitwise_and_(other : Tensor) -> Tensor

Tensor.bitwise_and_(other : number) -> Tensor

Tensor.bitwise_left_shift(other : Tensor) -> Tensor

Tensor.bitwise_left_shift(other : number) -> Tensor

Tensor.bitwise_left_shift(other : Tensor,
                          out : Tensor) -> Tensor

Tensor.bitwise_left_shift(other : number,
                          out : Tensor) -> Tensor

Tensor.bitwise_left_shift_(other : number) -> Tensor

Tensor.bitwise_left_shift_(other : Tensor) -> Tensor

Tensor.bitwise_not() -> Tensor

Tensor.bitwise_not(out : Tensor) -> Tensor

Tensor.bitwise_not_() -> Tensor

Tensor.bitwise_or(other : Tensor) -> Tensor

Tensor.bitwise_or(other : number) -> Tensor

Tensor.bitwise_or(other : Tensor,
                  out : Tensor) -> Tensor

Tensor.bitwise_or(other : number,
                  out : Tensor) -> Tensor

Tensor.bitwise_or_(other : Tensor) -> Tensor

Tensor.bitwise_or_(other : number) -> Tensor

Tensor.bitwise_right_shift(other : Tensor) -> Tensor

Tensor.bitwise_right_shift(other : number) -> Tensor

Tensor.bitwise_right_shift(other : Tensor,
                           out : Tensor) -> Tensor

Tensor.bitwise_right_shift(other : number,
                           out : Tensor) -> Tensor

Tensor.bitwise_right_shift_(other : number) -> Tensor

Tensor.bitwise_right_shift_(other : Tensor) -> Tensor

Tensor.bitwise_xor(other : Tensor) -> Tensor

Tensor.bitwise_xor(other : number) -> Tensor

Tensor.bitwise_xor(other : Tensor,
                   out : Tensor) -> Tensor

Tensor.bitwise_xor(other : number,
                   out : Tensor) -> Tensor

Tensor.bitwise_xor_(other : Tensor) -> Tensor

Tensor.bitwise_xor_(other : number) -> Tensor

Tensor.bmm(mat2 : Tensor) -> Tensor

Tensor.bmm(mat2 : Tensor,
           out : Tensor) -> Tensor

Tensor.broadcast_to(size : List[int]) -> Tensor

Tensor.cauchy_(median : float=0.0,
               sigma : float=1.0,
               generator : Optional[Generator]) -> Tensor

Tensor.ccol_indices() -> Tensor

Tensor.ceil() -> Tensor

Tensor.ceil(out : Tensor) -> Tensor

Tensor.ceil_() -> Tensor

Tensor.chalf(memory_format : Optional[int]) -> Tensor

Tensor.cholesky(upper : bool=False) -> Tensor

Tensor.cholesky(upper : bool=False,
                out : Tensor) -> Tensor

Tensor.cholesky_inverse(upper : bool=False) -> Tensor

Tensor.cholesky_inverse(upper : bool=False,
                        out : Tensor) -> Tensor

Tensor.cholesky_solve(input2 : Tensor,
                      upper : bool=False) -> Tensor

Tensor.cholesky_solve(input2 : Tensor,
                      upper : bool=False,
                      out : Tensor) -> Tensor

Tensor.chunk(chunks : int,
             dim : int=0) -> List[Tensor]

Tensor.clamp(min : Optional[number],
             max : Optional[number]) -> Tensor

Tensor.clamp(min : Optional[Tensor],
             max : Optional[Tensor]) -> Tensor

Tensor.clamp(min : Optional[number],
             max : Optional[number],
             out : Tensor) -> Tensor

Tensor.clamp(min : Optional[Tensor],
             max : Optional[Tensor],
             out : Tensor) -> Tensor

Tensor.clamp_(min : Optional[number],
              max : Optional[number]) -> Tensor

Tensor.clamp_(min : Optional[Tensor],
              max : Optional[Tensor]) -> Tensor

Tensor.clamp_max(max : number) -> Tensor

Tensor.clamp_max(max : Tensor) -> Tensor

Tensor.clamp_max(max : number,
                 out : Tensor) -> Tensor

Tensor.clamp_max(max : Tensor,
                 out : Tensor) -> Tensor

Tensor.clamp_max_(max : number) -> Tensor

Tensor.clamp_max_(max : Tensor) -> Tensor

Tensor.clamp_min(min : number) -> Tensor

Tensor.clamp_min(min : Tensor) -> Tensor

Tensor.clamp_min(min : number,
                 out : Tensor) -> Tensor

Tensor.clamp_min(min : Tensor,
                 out : Tensor) -> Tensor

Tensor.clamp_min_(min : number) -> Tensor

Tensor.clamp_min_(min : Tensor) -> Tensor

Tensor.clip(min : Optional[number],
            max : Optional[number]) -> Tensor

Tensor.clip(min : Optional[Tensor],
            max : Optional[Tensor]) -> Tensor

Tensor.clip(min : Optional[number],
            max : Optional[number],
            out : Tensor) -> Tensor

Tensor.clip(min : Optional[Tensor],
            max : Optional[Tensor],
            out : Tensor) -> Tensor

Tensor.clip_(min : Optional[number],
             max : Optional[number]) -> Tensor

Tensor.clip_(min : Optional[Tensor],
             max : Optional[Tensor]) -> Tensor

Tensor.clone(memory_format : Optional[int]) -> Tensor

Tensor.clone(memory_format : Optional[int],
             out : Tensor) -> Tensor

Tensor.coalesce() -> Tensor

Tensor.col_indices() -> Tensor

Tensor.conj() -> Tensor

Tensor.conj_physical() -> Tensor

Tensor.conj_physical(out : Tensor) -> Tensor

Tensor.conj_physical_() -> Tensor

Tensor.contiguous(memory_format : int=0) -> Tensor

Tensor.copy_(src : Tensor,
             non_blocking : bool=False) -> Tensor

Tensor.copy_(other : Tensor) -> Tensor

Tensor.copy_(other : int) -> Tensor

Tensor.copy_(other : float) -> Tensor

Tensor.copysign(other : Tensor) -> Tensor

Tensor.copysign(other : number) -> Tensor

Tensor.copysign(other : Tensor,
                out : Tensor) -> Tensor

Tensor.copysign(other : number,
                out : Tensor) -> Tensor

Tensor.copysign_(other : Tensor) -> Tensor

Tensor.copysign_(other : number) -> Tensor

Tensor.corrcoef() -> Tensor

Tensor.cos() -> Tensor

Tensor.cos(out : Tensor) -> Tensor

Tensor.cos_() -> Tensor

Tensor.cosh() -> Tensor

Tensor.cosh(out : Tensor) -> Tensor

Tensor.cosh_() -> Tensor

Tensor.count_nonzero(dim : List[int]) -> Tensor

Tensor.count_nonzero(dim : List[int],
                     out : Tensor) -> Tensor

Tensor.count_nonzero(dim : Optional[int]) -> Tensor

Tensor.count_nonzero(dim : Optional[int],
                     out : Tensor) -> Tensor

Tensor.cov(correction : int=1,
           fweights : Optional[Tensor],
           aweights : Optional[Tensor]) -> Tensor

Tensor.cpu() -> Tensor

Tensor.cross(other : Tensor,
             dim : Optional[int]) -> Tensor

Tensor.cross(other : Tensor,
             dim : Optional[int],
             out : Tensor) -> Tensor

Tensor.crow_indices() -> Tensor

Tensor.cuda() -> Tensor

Tensor.cummax(dim : int) -> Tuple[Tensor, Tensor]

Tensor.cummax(dim : str) -> Tuple[Tensor, Tensor]

Tensor.cummax(dim : str,
              values : Tensor,
              indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.cummax(dim : int,
              values : Tensor,
              indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.cummin(dim : int) -> Tuple[Tensor, Tensor]

Tensor.cummin(dim : str) -> Tuple[Tensor, Tensor]

Tensor.cummin(dim : str,
              values : Tensor,
              indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.cummin(dim : int,
              values : Tensor,
              indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.cumprod(dim : int,
               dtype : Optional[int]) -> Tensor

Tensor.cumprod(dim : str,
               dtype : Optional[int]) -> Tensor

Tensor.cumprod(dim : str,
               dtype : Optional[int],
               out : Tensor) -> Tensor

Tensor.cumprod(dim : int,
               dtype : Optional[int],
               out : Tensor) -> Tensor

Tensor.cumprod_(dim : int,
                dtype : Optional[int]) -> Tensor

Tensor.cumprod_(dim : str,
                dtype : Optional[int]) -> Tensor

Tensor.cumsum(dim : int,
              dtype : Optional[int]) -> Tensor

Tensor.cumsum(dim : str,
              dtype : Optional[int]) -> Tensor

Tensor.cumsum(dim : str,
              dtype : Optional[int],
              out : Tensor) -> Tensor

Tensor.cumsum(dim : int,
              dtype : Optional[int],
              out : Tensor) -> Tensor

Tensor.cumsum_(dim : int,
               dtype : Optional[int]) -> Tensor

Tensor.cumsum_(dim : str,
               dtype : Optional[int]) -> Tensor

Tensor.data() -> Tensor

Tensor.deg2rad() -> Tensor

Tensor.deg2rad(out : Tensor) -> Tensor

Tensor.deg2rad_() -> Tensor

Tensor.dense_dim() -> int

Tensor.dequantize() -> Tensor

Tensor.dequantize(out : Tensor) -> Tensor

Tensor.det() -> Tensor

Tensor.detach() -> Tensor

Tensor.detach_() -> Tensor

Tensor.diag(diagonal : int=0) -> Tensor

Tensor.diag(diagonal : int=0,
            out : Tensor) -> Tensor

Tensor.diag_embed(offset : int=0,
                  dim1 : int=-2,
                  dim2 : int=-1) -> Tensor

Tensor.diag_embed(offset : int=0,
                  dim1 : int=-2,
                  dim2 : int=-1,
                  out : Tensor) -> Tensor

Tensor.diagflat(offset : int=0) -> Tensor

Tensor.diagonal(offset : int=0,
                dim1 : int=0,
                dim2 : int=1) -> Tensor

Tensor.diagonal(outdim : str,
                dim1 : str,
                dim2 : str,
                offset : int=0) -> Tensor

Tensor.diagonal_scatter(src : Tensor,
                        offset : int=0,
                        dim1 : int=0,
                        dim2 : int=1) -> Tensor

Tensor.diagonal_scatter(src : Tensor,
                        offset : int=0,
                        dim1 : int=0,
                        dim2 : int=1,
                        out : Tensor) -> Tensor

Tensor.diff(n : int=1,
            dim : int=-1,
            prepend : Optional[Tensor],
            append : Optional[Tensor]) -> Tensor

Tensor.diff(n : int=1,
            dim : int=-1,
            prepend : Optional[Tensor],
            append : Optional[Tensor],
            out : Tensor) -> Tensor

Tensor.digamma() -> Tensor

Tensor.digamma(out : Tensor) -> Tensor

Tensor.digamma_() -> Tensor

Tensor.dim() -> int

Tensor.dist(other : Tensor,
            p : number=2) -> Tensor

Tensor.dist(other : Tensor,
            p : number=2,
            out : Tensor) -> Tensor

Tensor.div(other : Tensor) -> Tensor

Tensor.div(other : number) -> Tensor

Tensor.div(other : Tensor,
           rounding_mode : Optional[str]) -> Tensor

Tensor.div(other : number,
           rounding_mode : Optional[str]) -> Tensor

Tensor.div(other : Tensor,
           out : Tensor) -> Tensor

Tensor.div(other : Tensor,
           rounding_mode : Optional[str],
           out : Tensor) -> Tensor

Tensor.div(other : number,
           out : Tensor) -> Tensor

Tensor.div(other : number,
           rounding_mode : Optional[str],
           out : Tensor) -> Tensor

Tensor.div_(other : Tensor) -> Tensor

Tensor.div_(other : Tensor,
            rounding_mode : Optional[str]) -> Tensor

Tensor.div_(other : number) -> Tensor

Tensor.div_(other : number,
            rounding_mode : Optional[str]) -> Tensor

Tensor.divide(other : Tensor) -> Tensor

Tensor.divide(other : number) -> Tensor

Tensor.divide(other : Tensor,
              rounding_mode : Optional[str]) -> Tensor

Tensor.divide(other : number,
              rounding_mode : Optional[str]) -> Tensor

Tensor.divide(other : Tensor,
              out : Tensor) -> Tensor

Tensor.divide(other : Tensor,
              rounding_mode : Optional[str],
              out : Tensor) -> Tensor

Tensor.divide_(other : Tensor) -> Tensor

Tensor.divide_(other : Tensor,
               rounding_mode : Optional[str]) -> Tensor

Tensor.divide_(other : number,
               rounding_mode : Optional[str]) -> Tensor

Tensor.divide_(other : number) -> Tensor

Tensor.dot(tensor : Tensor) -> Tensor

Tensor.dot(tensor : Tensor,
           out : Tensor) -> Tensor

Tensor.dsplit(sections : int) -> List[Tensor]

Tensor.dsplit(indices : List[int]) -> List[Tensor]

Tensor.element_size() -> int

Tensor.eq(other : Tensor) -> Tensor

Tensor.eq(other : number) -> Tensor

Tensor.eq(other : number,
          out : Tensor) -> Tensor

Tensor.eq(other : Tensor,
          out : Tensor) -> Tensor

Tensor.eq_(other : number) -> Tensor

Tensor.eq_(other : Tensor) -> Tensor

Tensor.equal(other : Tensor) -> bool

Tensor.erf() -> Tensor

Tensor.erf(out : Tensor) -> Tensor

Tensor.erf_() -> Tensor

Tensor.erfc() -> Tensor

Tensor.erfc(out : Tensor) -> Tensor

Tensor.erfc_() -> Tensor

Tensor.erfinv() -> Tensor

Tensor.erfinv(out : Tensor) -> Tensor

Tensor.erfinv_() -> Tensor

Tensor.exp() -> Tensor

Tensor.exp(out : Tensor) -> Tensor

Tensor.exp2() -> Tensor

Tensor.exp2(out : Tensor) -> Tensor

Tensor.exp2_() -> Tensor

Tensor.exp_() -> Tensor

Tensor.expand(size : List[int],
              implicit : bool=False) -> Tensor

Tensor.expand_as(other : Tensor) -> Tensor

Tensor.expm1() -> Tensor

Tensor.expm1(out : Tensor) -> Tensor

Tensor.expm1_() -> Tensor

Tensor.exponential_(lambd : float=1.0,
                    generator : Optional[Generator]) -> Tensor

Tensor.fill_(value : number) -> Tensor

Tensor.fill_(value : Tensor) -> Tensor

Tensor.fill_diagonal_(fill_value : number,
                      wrap : bool=False) -> Tensor

Tensor.fix() -> Tensor

Tensor.fix(out : Tensor) -> Tensor

Tensor.fix_() -> Tensor

Tensor.flatten(start_dim : int=0,
               end_dim : int=-1) -> Tensor

Tensor.flatten(dims : List[str],
               out_dim : str) -> Tensor

Tensor.flatten(start_dim : int,
               end_dim : int,
               out_dim : str) -> Tensor

Tensor.flatten(start_dim : str,
               end_dim : str,
               out_dim : str) -> Tensor

Tensor.flip(dims : List[int]) -> Tensor

Tensor.flip(dims : List[int],
            out : Tensor) -> Tensor

Tensor.fliplr() -> Tensor

Tensor.flipud() -> Tensor

Tensor.float_power(exponent : Tensor) -> Tensor

Tensor.float_power(exponent : number) -> Tensor

Tensor.float_power(exponent : Tensor,
                   out : Tensor) -> Tensor

Tensor.float_power(exponent : number,
                   out : Tensor) -> Tensor

Tensor.float_power_(exponent : Tensor) -> Tensor

Tensor.float_power_(exponent : number) -> Tensor

Tensor.floor() -> Tensor

Tensor.floor(out : Tensor) -> Tensor

Tensor.floor_() -> Tensor

Tensor.floor_divide(other : Tensor) -> Tensor

Tensor.floor_divide(other : number) -> Tensor

Tensor.floor_divide(other : Tensor,
                    out : Tensor) -> Tensor

Tensor.floor_divide(other : number,
                    out : Tensor) -> Tensor

Tensor.floor_divide_(other : number) -> Tensor

Tensor.floor_divide_(other : Tensor) -> Tensor

Tensor.fmax(other : Tensor) -> Tensor

Tensor.fmax(other : Tensor,
            out : Tensor) -> Tensor

Tensor.fmin(other : Tensor) -> Tensor

Tensor.fmin(other : Tensor,
            out : Tensor) -> Tensor

Tensor.fmod(other : Tensor) -> Tensor

Tensor.fmod(other : number) -> Tensor

Tensor.fmod(other : Tensor,
            out : Tensor) -> Tensor

Tensor.fmod(other : number,
            out : Tensor) -> Tensor

Tensor.fmod_(other : Tensor) -> Tensor

Tensor.fmod_(other : number) -> Tensor

Tensor.frac() -> Tensor

Tensor.frac(out : Tensor) -> Tensor

Tensor.frac_() -> Tensor

Tensor.frexp() -> Tuple[Tensor, Tensor]

Tensor.frexp(mantissa : Tensor,
             exponent : Tensor) -> Tuple[Tensor, Tensor]

Tensor.gather(dim : int,
              index : Tensor,
              sparse_grad : bool=False) -> Tensor

Tensor.gather(dim : int,
              index : Tensor,
              sparse_grad : bool=False,
              out : Tensor) -> Tensor

Tensor.gather(dim : str,
              index : Tensor,
              sparse_grad : bool=False) -> Tensor

Tensor.gather(dim : str,
              index : Tensor,
              sparse_grad : bool=False,
              out : Tensor) -> Tensor

Tensor.gcd(other : Tensor) -> Tensor

Tensor.gcd(other : Tensor,
           out : Tensor) -> Tensor

Tensor.gcd_(other : Tensor) -> Tensor

Tensor.ge(other : Tensor) -> Tensor

Tensor.ge(other : number) -> Tensor

Tensor.ge(other : number,
          out : Tensor) -> Tensor

Tensor.ge(other : Tensor,
          out : Tensor) -> Tensor

Tensor.ge_(other : number) -> Tensor

Tensor.ge_(other : Tensor) -> Tensor

Tensor.geometric_(p : float,
                  generator : Optional[Generator]) -> Tensor

Tensor.geqrf() -> Tuple[Tensor, Tensor]

Tensor.geqrf(a : Tensor,
             tau : Tensor) -> Tuple[Tensor, Tensor]

Tensor.ger(vec2 : Tensor) -> Tensor

Tensor.ger(vec2 : Tensor,
           out : Tensor) -> Tensor

Tensor.get_device() -> int

Tensor.greater(other : Tensor) -> Tensor

Tensor.greater(other : number) -> Tensor

Tensor.greater(other : number,
               out : Tensor) -> Tensor

Tensor.greater(other : Tensor,
               out : Tensor) -> Tensor

Tensor.greater_(other : number) -> Tensor

Tensor.greater_(other : Tensor) -> Tensor

Tensor.greater_equal(other : Tensor) -> Tensor

Tensor.greater_equal(other : number) -> Tensor

Tensor.greater_equal(other : number,
                     out : Tensor) -> Tensor

Tensor.greater_equal(other : Tensor,
                     out : Tensor) -> Tensor

Tensor.greater_equal_(other : number) -> Tensor

Tensor.greater_equal_(other : Tensor) -> Tensor

Tensor.gt(other : Tensor) -> Tensor

Tensor.gt(other : number) -> Tensor

Tensor.gt(other : number,
          out : Tensor) -> Tensor

Tensor.gt(other : Tensor,
          out : Tensor) -> Tensor

Tensor.gt_(other : number) -> Tensor

Tensor.gt_(other : Tensor) -> Tensor

Tensor.hardshrink(lambd : number=0.5) -> Tensor

Tensor.hardshrink(lambd : number=0.5,
                  out : Tensor) -> Tensor

Tensor.heaviside(values : Tensor) -> Tensor

Tensor.heaviside(values : Tensor,
                 out : Tensor) -> Tensor

Tensor.heaviside_(values : Tensor) -> Tensor

Tensor.histc(bins : int=100,
             min : number=0,
             max : number=0) -> Tensor

Tensor.histc(bins : int=100,
             min : number=0,
             max : number=0,
             out : Tensor) -> Tensor

Tensor.histogram(bins : Tensor,
                 weight : Optional[Tensor],
                 density : bool=False) -> Tuple[Tensor, Tensor]

Tensor.histogram(bins : Tensor,
                 weight : Optional[Tensor],
                 density : bool=False,
                 hist : Tensor,
                 bin_edges : Tensor) -> Tuple[Tensor, Tensor]

Tensor.histogram(bins : int=100,
                 range : Optional[List[float]],
                 weight : Optional[Tensor],
                 density : bool=False) -> Tuple[Tensor, Tensor]

Tensor.histogram(bins : int=100,
                 range : Optional[List[float]],
                 weight : Optional[Tensor],
                 density : bool=False,
                 hist : Tensor,
                 bin_edges : Tensor) -> Tuple[Tensor, Tensor]

Tensor.hsplit(sections : int) -> List[Tensor]

Tensor.hsplit(indices : List[int]) -> List[Tensor]

Tensor.hypot(other : Tensor) -> Tensor

Tensor.hypot(other : Tensor,
             out : Tensor) -> Tensor

Tensor.hypot_(other : Tensor) -> Tensor

Tensor.i0() -> Tensor

Tensor.i0(out : Tensor) -> Tensor

Tensor.i0_() -> Tensor

Tensor.igamma(other : Tensor) -> Tensor

Tensor.igamma(other : Tensor,
              out : Tensor) -> Tensor

Tensor.igamma_(other : Tensor) -> Tensor

Tensor.igammac(other : Tensor) -> Tensor

Tensor.igammac(other : Tensor,
               out : Tensor) -> Tensor

Tensor.igammac_(other : Tensor) -> Tensor

Tensor.imag() -> Tensor

Tensor.index_add(dim : int,
                 index : Tensor,
                 source : Tensor,
                 alpha : number=1) -> Tensor

Tensor.index_add(dim : int,
                 index : Tensor,
                 source : Tensor,
                 alpha : number=1,
                 out : Tensor) -> Tensor

Tensor.index_add(dim : str,
                 index : Tensor,
                 source : Tensor,
                 alpha : number=1) -> Tensor

Tensor.index_add_(dim : int,
                  index : Tensor,
                  source : Tensor,
                  alpha : number=1) -> Tensor

Tensor.index_copy(dim : int,
                  index : Tensor,
                  source : Tensor) -> Tensor

Tensor.index_copy(dim : str,
                  index : Tensor,
                  source : Tensor) -> Tensor

Tensor.index_copy(dim : int,
                  index : Tensor,
                  source : Tensor,
                  out : Tensor) -> Tensor

Tensor.index_copy_(dim : int,
                   index : Tensor,
                   source : Tensor) -> Tensor

Tensor.index_copy_(dim : str,
                   index : Tensor,
                   source : Tensor) -> Tensor

Tensor.index_fill(dim : int,
                  index : Tensor,
                  value : Tensor) -> Tensor

Tensor.index_fill(dim : int,
                  index : Tensor,
                  value : number) -> Tensor

Tensor.index_fill(dim : str,
                  index : Tensor,
                  value : number) -> Tensor

Tensor.index_fill(dim : str,
                  index : Tensor,
                  value : Tensor) -> Tensor

Tensor.index_fill(dim : int,
                  index : Tensor,
                  value : number,
                  out : Tensor) -> Tensor

Tensor.index_fill(dim : int,
                  index : Tensor,
                  value : Tensor,
                  out : Tensor) -> Tensor

Tensor.index_fill_(dim : int,
                   index : Tensor,
                   value : Tensor) -> Tensor

Tensor.index_fill_(dim : int,
                   index : Tensor,
                   value : number) -> Tensor

Tensor.index_fill_(dim : str,
                   index : Tensor,
                   value : number) -> Tensor

Tensor.index_fill_(dim : str,
                   index : Tensor,
                   value : Tensor) -> Tensor

Tensor.index_put(indices : List[Optional[Tensor]],
                 values : Tensor,
                 accumulate : bool=False) -> Tensor

Tensor.index_put(indices : List[Optional[Tensor]],
                 values : Tensor,
                 accumulate : bool=False,
                 out : Tensor) -> Tensor

Tensor.index_put(indices : List[Tensor],
                 values : Tensor,
                 accumulate : bool=False) -> Tensor

Tensor.index_put_(indices : List[Optional[Tensor]],
                  values : Tensor,
                  accumulate : bool=False) -> Tensor

Tensor.index_put_(indices : List[Tensor],
                  values : Tensor,
                  accumulate : bool=False) -> Tensor

Tensor.index_reduce(dim : int,
                    index : Tensor,
                    source : Tensor,
                    reduce : str,
                    include_self : bool=True) -> Tensor

Tensor.index_reduce(dim : int,
                    index : Tensor,
                    source : Tensor,
                    reduce : str,
                    include_self : bool=True,
                    out : Tensor) -> Tensor

Tensor.index_reduce_(dim : int,
                     index : Tensor,
                     source : Tensor,
                     reduce : str,
                     include_self : bool=True) -> Tensor

Tensor.index_select(dim : int,
                    index : Tensor) -> Tensor

Tensor.index_select(dim : int,
                    index : Tensor,
                    out : Tensor) -> Tensor

Tensor.index_select(dim : str,
                    index : Tensor) -> Tensor

Tensor.index_select(dim : str,
                    index : Tensor,
                    out : Tensor) -> Tensor

Tensor.indices() -> Tensor

Tensor.inner(other : Tensor) -> Tensor

Tensor.inner(other : Tensor,
             out : Tensor) -> Tensor

Tensor.int_repr(out : Tensor) -> Tensor

Tensor.int_repr() -> Tensor

Tensor.inverse() -> Tensor

Tensor.inverse(out : Tensor) -> Tensor

Tensor.is_coalesced() -> bool

Tensor.is_complex() -> bool

Tensor.is_conj() -> bool

Tensor.is_contiguous() -> bool

Tensor.is_contiguous(memory_format : int) -> bool

Tensor.is_distributed() -> bool

Tensor.is_floating_point() -> bool

Tensor.is_inference() -> bool

Tensor.is_leaf() -> bool

Tensor.is_neg() -> bool

Tensor.is_nonzero() -> bool

Tensor.is_pinned(device : Optional[Device]) -> bool

Tensor.is_same_size(other : Tensor) -> bool

Tensor.is_set_to(tensor : Tensor) -> bool

Tensor.is_signed() -> bool

Tensor.isclose(other : Tensor,
               rtol : float=1e-05,
               atol : float=1e-08,
               equal_nan : bool=False) -> Tensor

Tensor.isfinite() -> Tensor

Tensor.isinf() -> Tensor

Tensor.isinf(out : Tensor) -> Tensor

Tensor.isnan() -> Tensor

Tensor.isnan(out : Tensor) -> Tensor

Tensor.isneginf() -> Tensor

Tensor.isneginf(out : Tensor) -> Tensor

Tensor.isposinf() -> Tensor

Tensor.isposinf(out : Tensor) -> Tensor

Tensor.isreal() -> Tensor

Tensor.istft(n_fft : int,
             hop_length : Optional[int],
             win_length : Optional[int],
             window : Optional[Tensor],
             center : bool=True,
             normalized : bool=False,
             onesided : Optional[bool],
             length : Optional[int],
             return_complex : bool=False) -> Tensor

Tensor.item() -> number

Tensor.kron(other : Tensor) -> Tensor

Tensor.kron(other : Tensor,
            out : Tensor) -> Tensor

Tensor.kthvalue(k : int,
                dim : int=-1,
                keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.kthvalue(k : int,
                dim : str,
                keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.kthvalue(k : int,
                dim : str,
                keepdim : bool=False,
                values : Tensor,
                indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.kthvalue(k : int,
                dim : int=-1,
                keepdim : bool=False,
                values : Tensor,
                indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.lcm(other : Tensor) -> Tensor

Tensor.lcm(other : Tensor,
           out : Tensor) -> Tensor

Tensor.lcm_(other : Tensor) -> Tensor

Tensor.ldexp(other : Tensor) -> Tensor

Tensor.ldexp(other : Tensor,
             out : Tensor) -> Tensor

Tensor.ldexp_(other : Tensor) -> Tensor

Tensor.le(other : Tensor) -> Tensor

Tensor.le(other : number) -> Tensor

Tensor.le(other : number,
          out : Tensor) -> Tensor

Tensor.le(other : Tensor,
          out : Tensor) -> Tensor

Tensor.le_(other : number) -> Tensor

Tensor.le_(other : Tensor) -> Tensor

Tensor.lerp(end : Tensor,
            weight : number) -> Tensor

Tensor.lerp(end : Tensor,
            weight : Tensor) -> Tensor

Tensor.lerp(end : Tensor,
            weight : number,
            out : Tensor) -> Tensor

Tensor.lerp(end : Tensor,
            weight : Tensor,
            out : Tensor) -> Tensor

Tensor.lerp_(end : Tensor,
             weight : number) -> Tensor

Tensor.lerp_(end : Tensor,
             weight : Tensor) -> Tensor

Tensor.less(other : Tensor) -> Tensor

Tensor.less(other : number) -> Tensor

Tensor.less(other : number,
            out : Tensor) -> Tensor

Tensor.less(other : Tensor,
            out : Tensor) -> Tensor

Tensor.less_(other : number) -> Tensor

Tensor.less_(other : Tensor) -> Tensor

Tensor.less_equal(other : Tensor) -> Tensor

Tensor.less_equal(other : number) -> Tensor

Tensor.less_equal(other : number,
                  out : Tensor) -> Tensor

Tensor.less_equal(other : Tensor,
                  out : Tensor) -> Tensor

Tensor.less_equal_(other : number) -> Tensor

Tensor.less_equal_(other : Tensor) -> Tensor

Tensor.lgamma() -> Tensor

Tensor.lgamma(out : Tensor) -> Tensor

Tensor.lgamma_() -> Tensor

Tensor.log() -> Tensor

Tensor.log(out : Tensor) -> Tensor

Tensor.log10() -> Tensor

Tensor.log10(out : Tensor) -> Tensor

Tensor.log10_() -> Tensor

Tensor.log1p() -> Tensor

Tensor.log1p(out : Tensor) -> Tensor

Tensor.log1p_() -> Tensor

Tensor.log2() -> Tensor

Tensor.log2(out : Tensor) -> Tensor

Tensor.log2_() -> Tensor

Tensor.log_() -> Tensor

Tensor.log_normal_(mean : float=1.0,
                   std : float=2.0,
                   generator : Optional[Generator]) -> Tensor

Tensor.log_softmax(dim : int,
                   dtype : Optional[int]) -> Tensor

Tensor.log_softmax(dim : str,
                   dtype : Optional[int]) -> Tensor

Tensor.log_softmax(dim : int,
                   dtype : Optional[int],
                   out : Tensor) -> Tensor

Tensor.logaddexp(other : Tensor) -> Tensor

Tensor.logaddexp(other : Tensor,
                 out : Tensor) -> Tensor

Tensor.logaddexp2(other : Tensor) -> Tensor

Tensor.logaddexp2(other : Tensor,
                  out : Tensor) -> Tensor

Tensor.logcumsumexp(dim : int) -> Tensor

Tensor.logcumsumexp(dim : str) -> Tensor

Tensor.logcumsumexp(dim : str,
                    out : Tensor) -> Tensor

Tensor.logcumsumexp(dim : int,
                    out : Tensor) -> Tensor

Tensor.logdet() -> Tensor

Tensor.logical_and(other : Tensor) -> Tensor

Tensor.logical_and(other : Tensor,
                   out : Tensor) -> Tensor

Tensor.logical_and_(other : Tensor) -> Tensor

Tensor.logical_not() -> Tensor

Tensor.logical_not(out : Tensor) -> Tensor

Tensor.logical_not_() -> Tensor

Tensor.logical_or(other : Tensor) -> Tensor

Tensor.logical_or(other : Tensor,
                  out : Tensor) -> Tensor

Tensor.logical_or_(other : Tensor) -> Tensor

Tensor.logical_xor(other : Tensor) -> Tensor

Tensor.logical_xor(other : Tensor,
                   out : Tensor) -> Tensor

Tensor.logical_xor_(other : Tensor) -> Tensor

Tensor.logit(eps : Optional[float]) -> Tensor

Tensor.logit(eps : Optional[float],
             out : Tensor) -> Tensor

Tensor.logit_(eps : Optional[float]) -> Tensor

Tensor.logsumexp(dim : List[int],
                 keepdim : bool=False) -> Tensor

Tensor.logsumexp(dim : List[str],
                 keepdim : bool=False) -> Tensor

Tensor.logsumexp(dim : List[str],
                 keepdim : bool=False,
                 out : Tensor) -> Tensor

Tensor.logsumexp(dim : List[int],
                 keepdim : bool=False,
                 out : Tensor) -> Tensor

Tensor.lt(other : Tensor) -> Tensor

Tensor.lt(other : number) -> Tensor

Tensor.lt(other : number,
          out : Tensor) -> Tensor

Tensor.lt(other : Tensor,
          out : Tensor) -> Tensor

Tensor.lt_(other : number) -> Tensor

Tensor.lt_(other : Tensor) -> Tensor

Tensor.lu_solve(LU_data : Tensor,
                LU_pivots : Tensor) -> Tensor

Tensor.lu_solve(LU_data : Tensor,
                LU_pivots : Tensor,
                out : Tensor) -> Tensor

Tensor.mH() -> Tensor

Tensor.mH() -> Tensor

Tensor.mT() -> Tensor

Tensor.mT() -> Tensor

Tensor.masked_fill(mask : Tensor,
                   value : number) -> Tensor

Tensor.masked_fill(mask : Tensor,
                   value : Tensor) -> Tensor

Tensor.masked_fill(mask : Tensor,
                   value : number,
                   out : Tensor) -> Tensor

Tensor.masked_fill(mask : Tensor,
                   value : Tensor,
                   out : Tensor) -> Tensor

Tensor.masked_fill_(mask : Tensor,
                    value : number) -> Tensor

Tensor.masked_fill_(mask : Tensor,
                    value : Tensor) -> Tensor

Tensor.masked_scatter(mask : Tensor,
                      source : Tensor) -> Tensor

Tensor.masked_scatter(mask : Tensor,
                      source : Tensor,
                      out : Tensor) -> Tensor

Tensor.masked_scatter_(mask : Tensor,
                       source : Tensor) -> Tensor

Tensor.masked_select(mask : Tensor) -> Tensor

Tensor.masked_select(mask : Tensor,
                     out : Tensor) -> Tensor

Tensor.matmul(other : Tensor) -> Tensor

Tensor.matmul(other : Tensor,
              out : Tensor) -> Tensor

Tensor.matrix_exp() -> Tensor

Tensor.matrix_power(n : int) -> Tensor

Tensor.matrix_power(n : int,
                    out : Tensor) -> Tensor

Tensor.max(other : Tensor) -> Tensor

Tensor.max() -> Tensor

Tensor.max(dim : int,
           keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.max(dim : int,
           keepdim : bool=False,
           max : Tensor,
           max_values : Tensor) -> Tuple[Tensor, Tensor]

Tensor.max(dim : str,
           keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.max(dim : str,
           keepdim : bool=False,
           max : Tensor,
           max_values : Tensor) -> Tuple[Tensor, Tensor]

Tensor.max(out : Tensor) -> Tensor

Tensor.max(other : Tensor,
           out : Tensor) -> Tensor

Tensor.maximum(other : Tensor) -> Tensor

Tensor.maximum(other : Tensor,
               out : Tensor) -> Tensor

Tensor.mean(dtype : Optional[int]) -> Tensor

Tensor.mean(dim : Optional[List[int]],
            keepdim : bool=False,
            dtype : Optional[int]) -> Tensor

Tensor.mean(dim : List[str],
            keepdim : bool=False,
            dtype : Optional[int]) -> Tensor

Tensor.mean(dim : List[str],
            keepdim : bool=False,
            dtype : Optional[int],
            out : Tensor) -> Tensor

Tensor.mean(dim : Optional[List[int]],
            keepdim : bool=False,
            dtype : Optional[int],
            out : Tensor) -> Tensor

Tensor.mean(dtype : Optional[int],
            out : Tensor) -> Tensor

Tensor.median() -> Tensor

Tensor.median(dim : int,
              keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.median(dim : int,
              keepdim : bool=False,
              values : Tensor,
              indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.median(dim : str,
              keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.median(dim : str,
              keepdim : bool=False,
              values : Tensor,
              indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.median(out : Tensor) -> Tensor

Tensor.min(other : Tensor) -> Tensor

Tensor.min() -> Tensor

Tensor.min(dim : int,
           keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.min(dim : int,
           keepdim : bool=False,
           min : Tensor,
           min_indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.min(dim : str,
           keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.min(dim : str,
           keepdim : bool=False,
           min : Tensor,
           min_indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.min(out : Tensor) -> Tensor

Tensor.min(other : Tensor,
           out : Tensor) -> Tensor

Tensor.minimum(other : Tensor) -> Tensor

Tensor.minimum(other : Tensor,
               out : Tensor) -> Tensor

Tensor.mm(mat2 : Tensor) -> Tensor

Tensor.mm(mat2 : Tensor,
          out : Tensor) -> Tensor

Tensor.mode(dim : int=-1,
            keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.mode(dim : str,
            keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.mode(dim : str,
            keepdim : bool=False,
            values : Tensor,
            indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.mode(dim : int=-1,
            keepdim : bool=False,
            values : Tensor,
            indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.moveaxis(source : List[int],
                destination : List[int]) -> Tensor

Tensor.moveaxis(source : int,
                destination : int) -> Tensor

Tensor.movedim(source : int,
               destination : int) -> Tensor

Tensor.movedim(source : List[int],
               destination : List[int]) -> Tensor

Tensor.msort() -> Tensor

Tensor.msort(out : Tensor) -> Tensor

Tensor.mul(other : Tensor) -> Tensor

Tensor.mul(other : number) -> Tensor

Tensor.mul(other : Tensor,
           out : Tensor) -> Tensor

Tensor.mul(other : number,
           out : Tensor) -> Tensor

Tensor.mul_(other : Tensor) -> Tensor

Tensor.mul_(other : number) -> Tensor

Tensor.multinomial(num_samples : int,
                   replacement : bool=False,
                   generator : Optional[Generator]) -> Tensor

Tensor.multinomial(num_samples : int,
                   replacement : bool=False,
                   generator : Optional[Generator],
                   out : Tensor) -> Tensor

Tensor.multiply(other : Tensor) -> Tensor

Tensor.multiply(other : number) -> Tensor

Tensor.multiply(other : Tensor,
                out : Tensor) -> Tensor

Tensor.multiply_(other : Tensor) -> Tensor

Tensor.multiply_(other : number) -> Tensor

Tensor.mv(vec : Tensor) -> Tensor

Tensor.mv(vec : Tensor,
          out : Tensor) -> Tensor

Tensor.mvlgamma(p : int) -> Tensor

Tensor.mvlgamma(p : int,
                out : Tensor) -> Tensor

Tensor.mvlgamma_(p : int) -> Tensor

Tensor.nan_to_num(nan : Optional[float],
                  posinf : Optional[float],
                  neginf : Optional[float]) -> Tensor

Tensor.nan_to_num(nan : Optional[float],
                  posinf : Optional[float],
                  neginf : Optional[float],
                  out : Tensor) -> Tensor

Tensor.nan_to_num_(nan : Optional[float],
                   posinf : Optional[float],
                   neginf : Optional[float]) -> Tensor

Tensor.nanmean(dim : Optional[List[int]],
               keepdim : bool=False,
               dtype : Optional[int]) -> Tensor

Tensor.nanmean(dim : Optional[List[int]],
               keepdim : bool=False,
               dtype : Optional[int],
               out : Tensor) -> Tensor

Tensor.nanmedian() -> Tensor

Tensor.nanmedian(dim : int,
                 keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.nanmedian(dim : int,
                 keepdim : bool=False,
                 values : Tensor,
                 indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.nanmedian(dim : str,
                 keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.nanmedian(dim : str,
                 keepdim : bool=False,
                 values : Tensor,
                 indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.nanmedian(out : Tensor) -> Tensor

Tensor.nanquantile(q : Tensor,
                   dim : Optional[int],
                   keepdim : bool=False,
                   interpolation : str=linear) -> Tensor

Tensor.nanquantile(q : float,
                   dim : Optional[int],
                   keepdim : bool=False,
                   interpolation : str=linear) -> Tensor

Tensor.nanquantile(q : Tensor,
                   dim : Optional[int],
                   keepdim : bool=False,
                   interpolation : str=linear,
                   out : Tensor) -> Tensor

Tensor.nanquantile(q : float,
                   dim : Optional[int],
                   keepdim : bool=False,
                   interpolation : str=linear,
                   out : Tensor) -> Tensor

Tensor.nansum(dim : Optional[List[int]],
              keepdim : bool=False,
              dtype : Optional[int]) -> Tensor

Tensor.nansum(dim : Optional[List[int]],
              keepdim : bool=False,
              dtype : Optional[int],
              out : Tensor) -> Tensor

Tensor.narrow(dim : int,
              start : int,
              length : int) -> Tensor

Tensor.narrow(dim : int,
              start : Tensor,
              length : int) -> Tensor

Tensor.narrow_copy(dim : int,
                   start : int,
                   length : int) -> Tensor

Tensor.narrow_copy(dim : int,
                   start : int,
                   length : int,
                   out : Tensor) -> Tensor

Tensor.ne(other : Tensor) -> Tensor

Tensor.ne(other : number) -> Tensor

Tensor.ne(other : number,
          out : Tensor) -> Tensor

Tensor.ne(other : Tensor,
          out : Tensor) -> Tensor

Tensor.ne_(other : number) -> Tensor

Tensor.ne_(other : Tensor) -> Tensor

Tensor.neg() -> Tensor

Tensor.neg(out : Tensor) -> Tensor

Tensor.neg_() -> Tensor

Tensor.negative() -> Tensor

Tensor.negative(out : Tensor) -> Tensor

Tensor.negative_() -> Tensor

Tensor.new_empty(size : List[int],
                 dtype : Optional[int],
                 layout : Optional[int],
                 device : Optional[Device],
                 pin_memory : Optional[bool]) -> Tensor

Tensor.new_empty(size : List[int],
                 out : Tensor) -> Tensor

Tensor.new_empty_strided(size : List[int],
                         stride : List[int],
                         dtype : Optional[int],
                         layout : Optional[int],
                         device : Optional[Device],
                         pin_memory : Optional[bool]) -> Tensor

Tensor.new_empty_strided(size : List[int],
                         stride : List[int],
                         out : Tensor) -> Tensor

Tensor.new_full(size : List[int],
                fill_value : number,
                dtype : Optional[int],
                layout : Optional[int],
                device : Optional[Device],
                pin_memory : Optional[bool]) -> Tensor

Tensor.new_full(size : List[int],
                fill_value : number,
                out : Tensor) -> Tensor

Tensor.new_ones(size : List[int],
                dtype : Optional[int],
                layout : Optional[int],
                device : Optional[Device],
                pin_memory : Optional[bool]) -> Tensor

Tensor.new_ones(size : List[int],
                out : Tensor) -> Tensor

Tensor.new_zeros(size : List[int],
                 dtype : Optional[int],
                 layout : Optional[int],
                 device : Optional[Device],
                 pin_memory : Optional[bool]) -> Tensor

Tensor.new_zeros(size : List[int],
                 out : Tensor) -> Tensor

Tensor.nextafter(other : Tensor) -> Tensor

Tensor.nextafter(other : Tensor,
                 out : Tensor) -> Tensor

Tensor.nextafter_(other : Tensor) -> Tensor

Tensor.nonzero() -> Tensor

Tensor.nonzero(out : Tensor) -> Tensor

Tensor.nonzero_static(size : int,
                      fill_value : int=-1) -> Tensor

Tensor.nonzero_static(size : int,
                      fill_value : int=-1,
                      out : Tensor) -> Tensor

Tensor.norm(p : number=2) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[int],
            keepdim : bool=False) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[str],
            keepdim : bool=False) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[int],
            keepdim : bool,
            dtype : int) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[int],
            keepdim : bool,
            dtype : int,
            out : Tensor) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[int],
            keepdim : bool=False,
            out : Tensor) -> Tensor

Tensor.norm(p : Optional[number],
            dtype : int) -> Tensor

Tensor.norm(p : Optional[number],
            dtype : int,
            out : Tensor) -> Tensor

Tensor.norm(p : number=2,
            out : Tensor) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[str],
            keepdim : bool,
            dtype : int) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[str],
            keepdim : bool,
            dtype : int,
            out : Tensor) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[str],
            keepdim : bool=False,
            out : Tensor) -> Tensor

Tensor.normal_(mean : float=0.0,
               std : float=1.0,
               generator : Optional[Generator]) -> Tensor

Tensor.not_equal(other : Tensor) -> Tensor

Tensor.not_equal(other : number) -> Tensor

Tensor.not_equal(other : number,
                 out : Tensor) -> Tensor

Tensor.not_equal(other : Tensor,
                 out : Tensor) -> Tensor

Tensor.not_equal_(other : number) -> Tensor

Tensor.not_equal_(other : Tensor) -> Tensor

Tensor.numel() -> int

Tensor.orgqr(input2 : Tensor) -> Tensor

Tensor.orgqr(input2 : Tensor,
             out : Tensor) -> Tensor

Tensor.ormqr(input2 : Tensor,
             input3 : Tensor,
             left : bool=True,
             transpose : bool=False) -> Tensor

Tensor.ormqr(input2 : Tensor,
             input3 : Tensor,
             left : bool=True,
             transpose : bool=False,
             out : Tensor) -> Tensor

Tensor.outer(vec2 : Tensor) -> Tensor

Tensor.outer(vec2 : Tensor,
             out : Tensor) -> Tensor

Tensor.output_nr() -> int

Tensor.permute(dims : List[int]) -> Tensor

Tensor.pin_memory(device : Optional[Device]) -> Tensor

Tensor.pinverse(rcond : float=1e-15) -> Tensor

Tensor.polygamma_(n : int) -> Tensor

Tensor.positive() -> Tensor

Tensor.pow(exponent : Tensor) -> Tensor

Tensor.pow(exponent : number) -> Tensor

Tensor.pow(exponent : number,
           out : Tensor) -> Tensor

Tensor.pow(exponent : Tensor,
           out : Tensor) -> Tensor

Tensor.pow_(exponent : number) -> Tensor

Tensor.pow_(exponent : Tensor) -> Tensor

Tensor.prelu(weight : Tensor) -> Tensor

Tensor.prod(dtype : Optional[int]) -> Tensor

Tensor.prod(dim : int,
            keepdim : bool=False,
            dtype : Optional[int]) -> Tensor

Tensor.prod(dim : str,
            keepdim : bool=False,
            dtype : Optional[int]) -> Tensor

Tensor.prod(dim : str,
            keepdim : bool=False,
            dtype : Optional[int],
            out : Tensor) -> Tensor

Tensor.prod(dim : int,
            keepdim : bool=False,
            dtype : Optional[int],
            out : Tensor) -> Tensor

Tensor.prod(dtype : Optional[int],
            out : Tensor) -> Tensor

Tensor.put(index : Tensor,
           source : Tensor,
           accumulate : bool=False) -> Tensor

Tensor.put(index : Tensor,
           source : Tensor,
           accumulate : bool=False,
           out : Tensor) -> Tensor

Tensor.put_(index : Tensor,
            source : Tensor,
            accumulate : bool=False) -> Tensor

Tensor.q_per_channel_axis() -> int

Tensor.q_per_channel_scales(out : Tensor) -> Tensor

Tensor.q_per_channel_scales() -> Tensor

Tensor.q_per_channel_zero_points(out : Tensor) -> Tensor

Tensor.q_per_channel_zero_points() -> Tensor

Tensor.q_scale() -> float

Tensor.q_zero_point() -> int

Tensor.qr(some : bool=True) -> Tuple[Tensor, Tensor]

Tensor.qr(some : bool=True,
          Q : Tensor,
          R : Tensor) -> Tuple[Tensor, Tensor]

Tensor.qscheme() -> QScheme

Tensor.quantile(q : Tensor,
                dim : Optional[int],
                keepdim : bool=False,
                interpolation : str=linear) -> Tensor

Tensor.quantile(q : float,
                dim : Optional[int],
                keepdim : bool=False,
                interpolation : str=linear) -> Tensor

Tensor.quantile(q : Tensor,
                dim : Optional[int],
                keepdim : bool=False,
                interpolation : str=linear,
                out : Tensor) -> Tensor

Tensor.quantile(q : float,
                dim : Optional[int],
                keepdim : bool=False,
                interpolation : str=linear,
                out : Tensor) -> Tensor

Tensor.rad2deg() -> Tensor

Tensor.rad2deg(out : Tensor) -> Tensor

Tensor.rad2deg_() -> Tensor

Tensor.random_(from : int,
               to : Optional[int],
               generator : Optional[Generator]) -> Tensor

Tensor.random_(to : int,
               generator : Optional[Generator]) -> Tensor

Tensor.random_(generator : Optional[Generator]) -> Tensor

Tensor.ravel() -> Tensor

Tensor.real() -> Tensor

Tensor.reciprocal() -> Tensor

Tensor.reciprocal(out : Tensor) -> Tensor

Tensor.reciprocal_() -> Tensor

Tensor.record_stream(s : Stream) -> Tuple[]

Tensor.refine_names(names : List[str]) -> Tensor

Tensor.relu() -> Tensor

Tensor.relu(out : Tensor) -> Tensor

Tensor.relu_() -> Tensor

Tensor.remainder(other : Tensor) -> Tensor

Tensor.remainder(other : number) -> Tensor

Tensor.remainder(other : Tensor,
                 out : Tensor) -> Tensor

Tensor.remainder(other : number,
                 out : Tensor) -> Tensor

Tensor.remainder_(other : Tensor) -> Tensor

Tensor.remainder_(other : number) -> Tensor

Tensor.rename(names : Optional[List[str]]) -> Tensor

Tensor.rename_(names : Optional[List[str]]) -> Tensor

Tensor.renorm(p : number,
              dim : int,
              maxnorm : number) -> Tensor

Tensor.renorm(p : number,
              dim : int,
              maxnorm : number,
              out : Tensor) -> Tensor

Tensor.renorm_(p : number,
               dim : int,
               maxnorm : number) -> Tensor

Tensor.repeat(repeats : List[int]) -> Tensor

Tensor.repeat(repeats : List[int],
              out : Tensor) -> Tensor

Tensor.repeat_interleave(repeats : Tensor,
                         dim : Optional[int],
                         output_size : Optional[int]) -> Tensor

Tensor.repeat_interleave(repeats : int,
                         dim : Optional[int],
                         output_size : Optional[int]) -> Tensor

Tensor.requires_grad_(requires_grad : bool=True) -> Tensor

Tensor.reshape(shape : List[int]) -> Tensor

Tensor.reshape_as(other : Tensor) -> Tensor

Tensor.resize(size : List[int],
              memory_format : Optional[int]) -> Tensor

Tensor.resize(size : List[int],
              memory_format : Optional[int],
              out : Tensor) -> Tensor

Tensor.resize_(size : List[int],
               memory_format : Optional[int]) -> Tensor

Tensor.resize_as(the_template : Tensor,
                 memory_format : Optional[int]) -> Tensor

Tensor.resize_as(the_template : Tensor,
                 memory_format : Optional[int],
                 out : Tensor) -> Tensor

Tensor.resize_as_(the_template : Tensor,
                  memory_format : Optional[int]) -> Tensor

Tensor.resize_as_sparse_(the_template : Tensor) -> Tensor

Tensor.resolve_conj() -> Tensor

Tensor.resolve_neg() -> Tensor

Tensor.retain_grad() -> Tuple[]

Tensor.retains_grad() -> bool

Tensor.roll(shifts : List[int],
            dims : List[int]=[]) -> Tensor

Tensor.roll(shifts : List[int],
            dims : List[int]=[],
            out : Tensor) -> Tensor

Tensor.rot90(k : int=1,
             dims : List[int]=[0, 1]) -> Tensor

Tensor.rot90(k : int=1,
             dims : List[int]=[0, 1],
             out : Tensor) -> Tensor

Tensor.round() -> Tensor

Tensor.round(decimals : int) -> Tensor

Tensor.round(out : Tensor) -> Tensor

Tensor.round(decimals : int,
             out : Tensor) -> Tensor

Tensor.round_() -> Tensor

Tensor.round_(decimals : int) -> Tensor

Tensor.row_indices() -> Tensor

Tensor.rsqrt() -> Tensor

Tensor.rsqrt(out : Tensor) -> Tensor

Tensor.rsqrt_() -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               value : number) -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               src : Tensor) -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               src : Tensor,
               reduce : str) -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               value : number,
               reduce : str) -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               src : Tensor,
               out : Tensor) -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               value : number,
               out : Tensor) -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               src : Tensor,
               reduce : str,
               out : Tensor) -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               value : number,
               reduce : str,
               out : Tensor) -> Tensor

Tensor.scatter(dim : str,
               index : Tensor,
               src : Tensor) -> Tensor

Tensor.scatter(dim : str,
               index : Tensor,
               value : number) -> Tensor

Tensor.scatter_(dim : int,
                index : Tensor,
                src : Tensor) -> Tensor

Tensor.scatter_(dim : int,
                index : Tensor,
                value : number) -> Tensor

Tensor.scatter_(dim : int,
                index : Tensor,
                src : Tensor,
                reduce : str) -> Tensor

Tensor.scatter_(dim : int,
                index : Tensor,
                value : number,
                reduce : str) -> Tensor

Tensor.scatter_add(dim : int,
                   index : Tensor,
                   src : Tensor) -> Tensor

Tensor.scatter_add(dim : int,
                   index : Tensor,
                   src : Tensor,
                   out : Tensor) -> Tensor

Tensor.scatter_add(dim : str,
                   index : Tensor,
                   src : Tensor) -> Tensor

Tensor.scatter_add_(dim : int,
                    index : Tensor,
                    src : Tensor) -> Tensor

Tensor.scatter_reduce(dim : int,
                      index : Tensor,
                      src : Tensor,
                      reduce : str,
                      include_self : bool=True) -> Tensor

Tensor.scatter_reduce(dim : int,
                      index : Tensor,
                      src : Tensor,
                      reduce : str,
                      include_self : bool=True,
                      out : Tensor) -> Tensor

Tensor.scatter_reduce_(dim : int,
                       index : Tensor,
                       src : Tensor,
                       reduce : str,
                       include_self : bool=True) -> Tensor

Tensor.select(dim : str,
              index : int) -> Tensor

Tensor.select(dim : int,
              index : int) -> Tensor

Tensor.select_scatter(src : Tensor,
                      dim : int,
                      index : int) -> Tensor

Tensor.select_scatter(src : Tensor,
                      dim : int,
                      index : int,
                      out : Tensor) -> Tensor

Tensor.set_(source : Storage,
            storage_offset : int,
            size : List[int],
            stride : List[int]=[]) -> Tensor

Tensor.set_(source : Tensor) -> Tensor

Tensor.set_() -> Tensor

Tensor.set_(source : Storage) -> Tensor

Tensor.set_(source : Tensor,
            storage_offset : int,
            size : List[int],
            stride : List[int]=[]) -> Tensor

Tensor.sgn() -> Tensor

Tensor.sgn(out : Tensor) -> Tensor

Tensor.sgn_() -> Tensor

Tensor.sigmoid() -> Tensor

Tensor.sigmoid(out : Tensor) -> Tensor

Tensor.sigmoid_() -> Tensor

Tensor.sign() -> Tensor

Tensor.sign(out : Tensor) -> Tensor

Tensor.sign_() -> Tensor

Tensor.signbit() -> Tensor

Tensor.signbit(out : Tensor) -> Tensor

Tensor.sin() -> Tensor

Tensor.sin(out : Tensor) -> Tensor

Tensor.sin_() -> Tensor

Tensor.sinc() -> Tensor

Tensor.sinc(out : Tensor) -> Tensor

Tensor.sinc_() -> Tensor

Tensor.sinh() -> Tensor

Tensor.sinh(out : Tensor) -> Tensor

Tensor.sinh_() -> Tensor

Tensor.size(dim : int) -> int

Tensor.size(dim : str) -> int

Tensor.size() -> List[int]

Tensor.slice_inverse(src : Tensor,
                     dim : int=0,
                     start : Optional[int],
                     end : Optional[int],
                     step : int=1) -> Tensor

Tensor.slice_scatter(src : Tensor,
                     dim : int=0,
                     start : Optional[int],
                     end : Optional[int],
                     step : int=1) -> Tensor

Tensor.slice_scatter(src : Tensor,
                     dim : int=0,
                     start : Optional[int],
                     end : Optional[int],
                     step : int=1,
                     out : Tensor) -> Tensor

Tensor.slogdet() -> Tuple[Tensor, Tensor]

Tensor.slogdet(sign : Tensor,
               logabsdet : Tensor) -> Tuple[Tensor, Tensor]

Tensor.smm(mat2 : Tensor) -> Tensor

Tensor.softmax(dim : int,
               dtype : Optional[int]) -> Tensor

Tensor.softmax(dim : str,
               dtype : Optional[int]) -> Tensor

Tensor.softmax(dim : int,
               dtype : Optional[int],
               out : Tensor) -> Tensor

Tensor.sort(dim : int=-1,
            descending : bool=False) -> Tuple[Tensor, Tensor]

Tensor.sort(stable : Optional[bool],
            dim : int=-1,
            descending : bool=False) -> Tuple[Tensor, Tensor]

Tensor.sort(stable : Optional[bool],
            dim : int=-1,
            descending : bool=False,
            values : Tensor,
            indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.sort(dim : int=-1,
            descending : bool=False,
            values : Tensor,
            indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.sort(dim : str,
            descending : bool=False) -> Tuple[Tensor, Tensor]

Tensor.sort(dim : str,
            descending : bool=False,
            values : Tensor,
            indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.sort(stable : Optional[bool],
            dim : str,
            descending : bool=False) -> Tuple[Tensor, Tensor]

Tensor.sort(stable : Optional[bool],
            dim : str,
            descending : bool=False,
            values : Tensor,
            indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.sparse_dim() -> int

Tensor.sparse_mask(mask : Tensor,
                   out : Tensor) -> Tensor

Tensor.sparse_mask(mask : Tensor) -> Tensor

Tensor.sparse_resize_(size : List[int],
                      sparse_dim : int,
                      dense_dim : int) -> Tensor

Tensor.sparse_resize_and_clear_(size : List[int],
                                sparse_dim : int,
                                dense_dim : int) -> Tensor

Tensor.split(split_size : int,
             dim : int=0) -> List[Tensor]

Tensor.split(split_size : List[int],
             dim : int=0) -> List[Tensor]

Tensor.split(split_sizes : List[int],
             dim : int=0) -> List[Tensor]

Tensor.split_with_sizes(split_sizes : List[int],
                        dim : int=0) -> List[Tensor]

Tensor.sqrt() -> Tensor

Tensor.sqrt(out : Tensor) -> Tensor

Tensor.sqrt_() -> Tensor

Tensor.square() -> Tensor

Tensor.square(out : Tensor) -> Tensor

Tensor.square_() -> Tensor

Tensor.squeeze() -> Tensor

Tensor.squeeze(dim : int) -> Tensor

Tensor.squeeze(dim : List[int]) -> Tensor

Tensor.squeeze(dim : str) -> Tensor

Tensor.squeeze_() -> Tensor

Tensor.squeeze_(dim : int) -> Tensor

Tensor.squeeze_(dim : List[int]) -> Tensor

Tensor.squeeze_(dim : str) -> Tensor

Tensor.sspaddmm(mat1 : Tensor,
                mat2 : Tensor,
                beta : number=1,
                alpha : number=1,
                out : Tensor) -> Tensor

Tensor.sspaddmm(mat1 : Tensor,
                mat2 : Tensor,
                beta : number=1,
                alpha : number=1) -> Tensor

Tensor.std(unbiased : bool=True) -> Tensor

Tensor.std(dim : Optional[List[int]],
           unbiased : bool=True,
           keepdim : bool=False) -> Tensor

Tensor.std(dim : Optional[List[int]],
           correction : Optional[number],
           keepdim : bool=False) -> Tensor

Tensor.std(dim : List[str],
           unbiased : bool=True,
           keepdim : bool=False) -> Tensor

Tensor.std(dim : List[str],
           unbiased : bool=True,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.std(dim : Optional[List[int]],
           unbiased : bool=True,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.std(dim : Optional[List[int]],
           correction : Optional[number],
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.std(dim : List[str],
           correction : Optional[number],
           keepdim : bool=False) -> Tensor

Tensor.std(dim : List[str],
           correction : Optional[number],
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.stft(n_fft : int,
            hop_length : Optional[int],
            win_length : Optional[int],
            window : Optional[Tensor],
            normalized : bool=False,
            onesided : Optional[bool],
            return_complex : Optional[bool],
            align_to_window : Optional[bool]) -> Tensor

Tensor.stft(n_fft : int,
            hop_length : Optional[int],
            win_length : Optional[int],
            window : Optional[Tensor],
            center : bool=True,
            pad_mode : str=reflect,
            normalized : bool=False,
            onesided : Optional[bool],
            return_complex : Optional[bool],
            align_to_window : Optional[bool]) -> Tensor

Tensor.storage_offset() -> int

Tensor.stride(dim : int) -> int

Tensor.stride(dim : str) -> int

Tensor.stride() -> List[int]

Tensor.sub(other : Tensor,
           alpha : number=1) -> Tensor

Tensor.sub(other : number,
           alpha : number=1) -> Tensor

Tensor.sub(other : Tensor,
           alpha : number=1,
           out : Tensor) -> Tensor

Tensor.sub(other : number,
           alpha : number=1,
           out : Tensor) -> Tensor

Tensor.sub_(other : Tensor,
            alpha : number=1) -> Tensor

Tensor.sub_(other : number,
            alpha : number=1) -> Tensor

Tensor.subtract(other : Tensor,
                alpha : number=1) -> Tensor

Tensor.subtract(other : Tensor,
                alpha : number=1,
                out : Tensor) -> Tensor

Tensor.subtract(other : number,
                alpha : number=1) -> Tensor

Tensor.subtract_(other : Tensor,
                 alpha : number=1) -> Tensor

Tensor.subtract_(other : number,
                 alpha : number=1) -> Tensor

Tensor.sum(dim : Optional[List[int]],
           keepdim : bool=False,
           dtype : Optional[int]) -> Tensor

Tensor.sum(dtype : Optional[int]) -> Tensor

Tensor.sum(dim : List[str],
           keepdim : bool=False,
           dtype : Optional[int]) -> Tensor

Tensor.sum(dim : List[str],
           keepdim : bool=False,
           dtype : Optional[int],
           out : Tensor) -> Tensor

Tensor.sum(dim : Optional[List[int]],
           keepdim : bool=False,
           dtype : Optional[int],
           out : Tensor) -> Tensor

Tensor.sum(dtype : Optional[int],
           out : Tensor) -> Tensor

Tensor.sum_to_size(size : List[int]) -> Tensor

Tensor.svd(some : bool=True,
           compute_uv : bool=True) -> Tuple[Tensor, Tensor, Tensor]

Tensor.svd(some : bool=True,
           compute_uv : bool=True,
           U : Tensor,
           S : Tensor,
           V : Tensor) -> Tuple[Tensor, Tensor, Tensor]

Tensor.swapaxes(axis0 : int,
                axis1 : int) -> Tensor

Tensor.swapaxes_(axis0 : int,
                 axis1 : int) -> Tensor

Tensor.swapdims(dim0 : int,
                dim1 : int) -> Tensor

Tensor.swapdims_(dim0 : int,
                 dim1 : int) -> Tensor

Tensor.t() -> Tensor

Tensor.t_() -> Tensor

Tensor.take(index : Tensor) -> Tensor

Tensor.take(index : Tensor,
            out : Tensor) -> Tensor

Tensor.take_along_dim(indices : Tensor,
                      dim : Optional[int]) -> Tensor

Tensor.take_along_dim(indices : Tensor,
                      dim : Optional[int],
                      out : Tensor) -> Tensor

Tensor.tan() -> Tensor

Tensor.tan(out : Tensor) -> Tensor

Tensor.tan_() -> Tensor

Tensor.tanh() -> Tensor

Tensor.tanh(out : Tensor) -> Tensor

Tensor.tanh_() -> Tensor

Tensor.tensor_split(sections : int,
                    dim : int=0) -> List[Tensor]

Tensor.tensor_split(indices : List[int],
                    dim : int=0) -> List[Tensor]

Tensor.tensor_split(tensor_indices_or_sections : Tensor,
                    dim : int=0) -> List[Tensor]

Tensor.tile(dims : List[int]) -> Tensor

Tensor.to(device : Device,
          dtype : int,
          non_blocking : bool=False,
          copy : bool=False,
          memory_format : Optional[int]) -> Tensor

Tensor.to(dtype : int,
          non_blocking : bool=False,
          copy : bool=False,
          memory_format : Optional[int]) -> Tensor

Tensor.to(other : Tensor,
          non_blocking : bool=False,
          copy : bool=False,
          memory_format : Optional[int]) -> Tensor

Tensor.to(dtype : Optional[int],
          layout : Optional[int],
          device : Optional[Device],
          pin_memory : Optional[bool],
          non_blocking : bool=False,
          copy : bool=False,
          memory_format : Optional[int]) -> Tensor

Tensor.to(device : Optional[Device],
          dtype : Optional[int],
          non_blocking : bool=False,
          copy : bool=False) -> Tensor

Tensor.to(dtype : Optional[int],
          non_blocking : bool=False,
          copy : bool=False) -> Tensor

Tensor.to(non_blocking : bool=False,
          copy : bool=False) -> Tensor

Tensor.to_dense(dtype : Optional[int],
                masked_grad : Optional[bool]) -> Tensor

Tensor.to_mkldnn(dtype : Optional[int]) -> Tensor

Tensor.to_mkldnn(dtype : Optional[int],
                 out : Tensor) -> Tensor

Tensor.to_padded_tensor(padding : float,
                        output_size : Optional[List[int]],
                        out : Tensor) -> Tensor

Tensor.to_padded_tensor(padding : float,
                        output_size : Optional[List[int]]) -> Tensor

Tensor.to_sparse(sparse_dim : int) -> Tensor

Tensor.to_sparse(layout : Optional[int],
                 blocksize : Optional[List[int]],
                 dense_dim : Optional[int]) -> Tensor

Tensor.to_sparse_bsc(blocksize : List[int],
                     dense_dim : Optional[int]) -> Tensor

Tensor.to_sparse_bsr(blocksize : List[int],
                     dense_dim : Optional[int]) -> Tensor

Tensor.to_sparse_csc(dense_dim : Optional[int]) -> Tensor

Tensor.to_sparse_csr(dense_dim : Optional[int]) -> Tensor

Tensor.topk(k : int,
            dim : int=-1,
            largest : bool=True,
            sorted : bool=True) -> Tuple[Tensor, Tensor]

Tensor.topk(k : int,
            dim : int=-1,
            largest : bool=True,
            sorted : bool=True,
            values : Tensor,
            indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.trace() -> Tensor

Tensor.trace(out : Tensor) -> Tensor

Tensor.transpose(dim0 : int,
                 dim1 : int) -> Tensor

Tensor.transpose(dim0 : str,
                 dim1 : str) -> Tensor

Tensor.transpose_(dim0 : int,
                  dim1 : int) -> Tensor

Tensor.triangular_solve(A : Tensor,
                        upper : bool=True,
                        transpose : bool=False,
                        unitriangular : bool=False) -> Tuple[Tensor, Tensor]

Tensor.triangular_solve(A : Tensor,
                        upper : bool=True,
                        transpose : bool=False,
                        unitriangular : bool=False,
                        X : Tensor,
                        M : Tensor) -> Tuple[Tensor, Tensor]

Tensor.tril(diagonal : int=0) -> Tensor

Tensor.tril(diagonal : int=0,
            out : Tensor) -> Tensor

Tensor.tril_(diagonal : int=0) -> Tensor

Tensor.triu(diagonal : int=0) -> Tensor

Tensor.triu(diagonal : int=0,
            out : Tensor) -> Tensor

Tensor.triu_(diagonal : int=0) -> Tensor

Tensor.true_divide(other : Tensor) -> Tensor

Tensor.true_divide(other : number) -> Tensor

Tensor.true_divide(other : Tensor,
                   out : Tensor) -> Tensor

Tensor.true_divide_(other : Tensor) -> Tensor

Tensor.true_divide_(other : number) -> Tensor

Tensor.trunc() -> Tensor

Tensor.trunc(out : Tensor) -> Tensor

Tensor.trunc_() -> Tensor

Tensor.type_as(other : Tensor) -> Tensor

Tensor.unbind(dim : int=0) -> List[Tensor]

Tensor.unbind(dim : str) -> List[Tensor]

Tensor.unflatten(dim : int,
                 sizes : List[int]) -> Tensor

Tensor.unflatten(dim : str,
                 sizes : List[int],
                 names : List[str]) -> Tensor

Tensor.unfold(dimension : int,
              size : int,
              step : int) -> Tensor

Tensor.uniform_(from : float=0.0,
                to : float=1.0,
                generator : Optional[Generator]) -> Tensor

Tensor.unique_consecutive(return_inverse : bool=False,
                          return_counts : bool=False,
                          dim : Optional[int]) -> Tuple[Tensor, Tensor, Tensor]

Tensor.unique_consecutive(return_inverse : bool=False,
                          return_counts : bool=False,
                          dim : Optional[int],
                          out0 : Tensor,
                          out1 : Tensor,
                          out2 : Tensor) -> Tuple[Tensor, Tensor, Tensor]

Tensor.unsafe_chunk(chunks : int,
                    dim : int=0) -> List[Tensor]

Tensor.unsafe_split(split_size : int,
                    dim : int=0) -> List[Tensor]

Tensor.unsafe_split(split_size : int,
                    dim : int=0,
                    out : List[Tensor]) -> Tuple[]

Tensor.unsafe_split_with_sizes(split_sizes : List[int],
                               dim : int=0) -> List[Tensor]

Tensor.unsafe_split_with_sizes(split_sizes : List[int],
                               dim : int=0,
                               out : List[Tensor]) -> Tuple[]

Tensor.unsqueeze(dim : int) -> Tensor

Tensor.unsqueeze_(dim : int) -> Tensor

Tensor.values() -> Tensor

Tensor.var(unbiased : bool=True) -> Tensor

Tensor.var(dim : Optional[List[int]],
           unbiased : bool=True,
           keepdim : bool=False) -> Tensor

Tensor.var(dim : Optional[List[int]],
           correction : Optional[number],
           keepdim : bool=False) -> Tensor

Tensor.var(dim : List[str],
           unbiased : bool=True,
           keepdim : bool=False) -> Tensor

Tensor.var(dim : List[str],
           unbiased : bool=True,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.var(dim : Optional[List[int]],
           unbiased : bool=True,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.var(dim : Optional[List[int]],
           correction : Optional[number],
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.var(dim : List[str],
           correction : Optional[number],
           keepdim : bool=False) -> Tensor

Tensor.var(dim : List[str],
           correction : Optional[number],
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.vdot(other : Tensor) -> Tensor

Tensor.vdot(other : Tensor,
            out : Tensor) -> Tensor

Tensor.view(size : List[int]) -> Tensor

Tensor.view(dtype : int) -> Tensor

Tensor.view_as(other : Tensor) -> Tensor

Tensor.vsplit(sections : int) -> List[Tensor]

Tensor.vsplit(indices : List[int]) -> List[Tensor]

Tensor.xlogy(other : Tensor) -> Tensor

Tensor.xlogy(other : number) -> Tensor

Tensor.xlogy(other : Tensor,
             out : Tensor) -> Tensor

Tensor.xlogy(other : number,
             out : Tensor) -> Tensor

Tensor.xlogy_(other : Tensor) -> Tensor

Tensor.xlogy_(other : number) -> Tensor

Tensor.zero_() -> Tensor

支持的 PyTorch 函数

torch.nn.functional.adaptive_avg_pool2d(input : Tensor,
                                        output_size : List[int]) -> Tensor

torch.nn.functional.adaptive_avg_pool3d(input : Tensor,
                                        output_size : List[int]) -> Tensor

torch.nn.functional.adaptive_max_pool1d_with_indices(input : Tensor,
                                                     output_size : List[int],
                                                     return_indices : bool=False) -> Tuple[Tensor, Tensor]

torch.nn.functional.adaptive_max_pool2d_with_indices(input : Tensor,
                                                     output_size : List[int],
                                                     return_indices : bool=False) -> Tuple[Tensor, Tensor]

torch.nn.functional.adaptive_max_pool3d_with_indices(input : Tensor,
                                                     output_size : List[int],
                                                     return_indices : bool=False) -> Tuple[Tensor, Tensor]

torch.nn.functional.affine_grid(theta : Tensor,
                                size : List[int],
                                align_corners : Optional[bool]) -> Tensor

torch.nn.functional.alpha_dropout(input : Tensor,
                                  p : float=0.5,
                                  training : bool=False,
                                  inplace : bool=False) -> Tensor

torch.nn.functional.assert_int_or_pair(arg : List[int],
                                       arg_name : str,
                                       message : str) -> NoneType

torch.nn.functional.batch_norm(input : Tensor,
                               running_mean : Optional[Tensor],
                               running_var : Optional[Tensor],
                               weight : Optional[Tensor],
                               bias : Optional[Tensor],
                               training : bool=False,
                               momentum : float=0.1,
                               eps : float=1e-05) -> Tensor

torch.nn.functional.binary_cross_entropy(input : Tensor,
                                         target : Tensor,
                                         weight : Optional[Tensor],
                                         size_average : Optional[bool],
                                         reduce : Optional[bool],
                                         reduction : str=mean) -> Tensor

torch.nn.functional.binary_cross_entropy_with_logits(input : Tensor,
                                                     target : Tensor,
                                                     weight : Optional[Tensor],
                                                     size_average : Optional[bool],
                                                     reduce : Optional[bool],
                                                     reduction : str=mean,
                                                     pos_weight : Optional[Tensor]) -> Tensor

torch.nn.functional.celu(input : Tensor,
                         alpha : float=1.0,
                         inplace : bool=False) -> Tensor

torch.nn.functional.cosine_embedding_loss(input1 : Tensor,
                                          input2 : Tensor,
                                          target : Tensor,
                                          margin : float=0.0,
                                          size_average : Optional[bool],
                                          reduce : Optional[bool],
                                          reduction : str=mean) -> Tensor

torch.nn.functional.cross_entropy(input : Tensor,
                                  target : Tensor,
                                  weight : Optional[Tensor],
                                  size_average : Optional[bool],
                                  ignore_index : int=-100,
                                  reduce : Optional[bool],
                                  reduction : str=mean,
                                  label_smoothing : float=0.0) -> Tensor

torch.nn.functional.ctc_loss(log_probs : Tensor,
                             targets : Tensor,
                             input_lengths : Tensor,
                             target_lengths : Tensor,
                             blank : int=0,
                             reduction : str=mean,
                             zero_infinity : bool=False) -> Tensor

torch.nn.functional.dropout(input : Tensor,
                            p : float=0.5,
                            training : bool=True,
                            inplace : bool=False) -> Tensor

torch.nn.functional.dropout1d(input : Tensor,
                              p : float=0.5,
                              training : bool=True,
                              inplace : bool=False) -> Tensor

torch.nn.functional.dropout2d(input : Tensor,
                              p : float=0.5,
                              training : bool=True,
                              inplace : bool=False) -> Tensor

torch.nn.functional.dropout3d(input : Tensor,
                              p : float=0.5,
                              training : bool=True,
                              inplace : bool=False) -> Tensor

torch.nn.functional.elu(input : Tensor,
                        alpha : float=1.0,
                        inplace : bool=False) -> Tensor

torch.nn.functional.embedding(input : Tensor,
                              weight : Tensor,
                              padding_idx : Optional[int],
                              max_norm : Optional[float],
                              norm_type : float=2.0,
                              scale_grad_by_freq : bool=False,
                              sparse : bool=False) -> Tensor

torch.nn.functional.embedding_bag(input : Tensor,
                                  weight : Tensor,
                                  offsets : Optional[Tensor],
                                  max_norm : Optional[float],
                                  norm_type : float=2.0,
                                  scale_grad_by_freq : bool=False,
                                  mode : str=mean,
                                  sparse : bool=False,
                                  per_sample_weights : Optional[Tensor],
                                  include_last_offset : bool=False,
                                  padding_idx : Optional[int]) -> Tensor

torch.nn.functional.feature_alpha_dropout(input : Tensor,
                                          p : float=0.5,
                                          training : bool=False,
                                          inplace : bool=False) -> Tensor

torch.nn.functional.fold(input : Tensor,
                         output_size : List[int],
                         kernel_size : List[int],
                         dilation : List[int]=1,
                         padding : List[int]=0,
                         stride : List[int]=1) -> Tensor

torch.nn.functional.fractional_max_pool2d_with_indices(input : Tensor,
                                                       kernel_size : List[int],
                                                       output_size : Optional[List[int]],
                                                       output_ratio : Optional[List[float]],
                                                       return_indices : bool=False,
                                                       _random_samples : Optional[Tensor]) -> Tuple[Tensor, Tensor]

torch.nn.functional.fractional_max_pool3d_with_indices(input : Tensor,
                                                       kernel_size : List[int],
                                                       output_size : Optional[List[int]],
                                                       output_ratio : Optional[List[float]],
                                                       return_indices : bool=False,
                                                       _random_samples : Optional[Tensor]) -> Tuple[Tensor, Tensor]

torch.nn.functional.gaussian_nll_loss(input : Tensor,
                                      target : Tensor,
                                      var : Union[Tensor, float],
                                      full : bool=False,
                                      eps : float=1e-06,
                                      reduction : str=mean) -> Tensor

torch.nn.functional.glu(input : Tensor,
                        dim : int=-1) -> Tensor

torch.nn.functional.grid_sample(input : Tensor,
                                grid : Tensor,
                                mode : str=bilinear,
                                padding_mode : str=zeros,
                                align_corners : Optional[bool]) -> Tensor

torch.nn.functional.group_norm(input : Tensor,
                               num_groups : int,
                               weight : Optional[Tensor],
                               bias : Optional[Tensor],
                               eps : float=1e-05) -> Tensor

torch.nn.functional.gumbel_softmax(logits : Tensor,
                                   tau : float=1.0,
                                   hard : bool=False,
                                   eps : float=1e-10,
                                   dim : int=-1) -> Tensor

torch.nn.functional.hardsigmoid(input : Tensor,
                                inplace : bool=False) -> Tensor

torch.nn.functional.hardswish(input : Tensor,
                              inplace : bool=False) -> Tensor

torch.nn.functional.hardtanh(input : Tensor,
                             min_val : float=-1.0,
                             max_val : float=1.0,
                             inplace : bool=False) -> Tensor

torch.nn.functional.hinge_embedding_loss(input : Tensor,
                                         target : Tensor,
                                         margin : float=1.0,
                                         size_average : Optional[bool],
                                         reduce : Optional[bool],
                                         reduction : str=mean) -> Tensor

torch.nn.functional.huber_loss(input : Tensor,
                               target : Tensor,
                               reduction : str=mean,
                               delta : float=1.0,
                               weight : Optional[Tensor]) -> Tensor

torch.nn.functional.instance_norm(input : Tensor,
                                  running_mean : Optional[Tensor],
                                  running_var : Optional[Tensor],
                                  weight : Optional[Tensor],
                                  bias : Optional[Tensor],
                                  use_input_stats : bool=True,
                                  momentum : float=0.1,
                                  eps : float=1e-05) -> Tensor

torch.nn.functional.kl_div(input : Tensor,
                           target : Tensor,
                           size_average : Optional[bool],
                           reduce : Optional[bool],
                           reduction : str=mean,
                           log_target : bool=False) -> Tensor

torch.nn.functional.l1_loss(input : Tensor,
                            target : Tensor,
                            size_average : Optional[bool],
                            reduce : Optional[bool],
                            reduction : str=mean,
                            weight : Optional[Tensor]) -> Tensor

torch.nn.functional.layer_norm(input : Tensor,
                               normalized_shape : List[int],
                               weight : Optional[Tensor],
                               bias : Optional[Tensor],
                               eps : float=1e-05) -> Tensor

torch.nn.functional.leaky_relu(input : Tensor,
                               negative_slope : float=0.01,
                               inplace : bool=False) -> Tensor

torch.nn.functional.local_response_norm(input : Tensor,
                                        size : int,
                                        alpha : float=0.0001,
                                        beta : float=0.75,
                                        k : float=1.0) -> Tensor

torch.nn.functional.log_softmax(input : Tensor,
                                dim : Optional[int],
                                _stacklevel : int=3,
                                dtype : Optional[int]) -> Tensor

torch.nn.functional.lp_pool1d(input : Tensor,
                              norm_type : Union[float, int],
                              kernel_size : int,
                              stride : Optional[List[int]],
                              ceil_mode : bool=False) -> Tensor

torch.nn.functional.lp_pool2d(input : Tensor,
                              norm_type : Union[float, int],
                              kernel_size : List[int],
                              stride : Optional[List[int]],
                              ceil_mode : bool=False) -> Tensor

torch.nn.functional.lp_pool3d(input : Tensor,
                              norm_type : Union[float, int],
                              kernel_size : List[int],
                              stride : Optional[List[int]],
                              ceil_mode : bool=False) -> Tensor

torch.nn.functional.margin_ranking_loss(input1 : Tensor,
                                        input2 : Tensor,
                                        target : Tensor,
                                        margin : float=0.0,
                                        size_average : Optional[bool],
                                        reduce : Optional[bool],
                                        reduction : str=mean) -> Tensor

torch.nn.functional.max_pool1d_with_indices(input : Tensor,
                                            kernel_size : List[int],
                                            stride : Optional[List[int]],
                                            padding : List[int]=0,
                                            dilation : List[int]=1,
                                            ceil_mode : bool=False,
                                            return_indices : bool=False) -> Tuple[Tensor, Tensor]

torch.nn.functional.max_pool2d_with_indices(input : Tensor,
                                            kernel_size : List[int],
                                            stride : Optional[List[int]],
                                            padding : List[int]=0,
                                            dilation : List[int]=1,
                                            ceil_mode : bool=False,
                                            return_indices : bool=False) -> Tuple[Tensor, Tensor]

torch.nn.functional.max_pool3d_with_indices(input : Tensor,
                                            kernel_size : List[int],
                                            stride : Optional[List[int]],
                                            padding : List[int]=0,
                                            dilation : List[int]=1,
                                            ceil_mode : bool=False,
                                            return_indices : bool=False) -> Tuple[Tensor, Tensor]

torch.nn.functional.max_unpool1d(input : Tensor,
                                 indices : Tensor,
                                 kernel_size : List[int],
                                 stride : Optional[List[int]],
                                 padding : List[int]=0,
                                 output_size : Optional[List[int]]) -> Tensor

torch.nn.functional.max_unpool2d(input : Tensor,
                                 indices : Tensor,
                                 kernel_size : List[int],
                                 stride : Optional[List[int]],
                                 padding : List[int]=0,
                                 output_size : Optional[List[int]]) -> Tensor

torch.nn.functional.max_unpool3d(input : Tensor,
                                 indices : Tensor,
                                 kernel_size : List[int],
                                 stride : Optional[List[int]],
                                 padding : List[int]=0,
                                 output_size : Optional[List[int]]) -> Tensor

torch.nn.functional.mish(input : Tensor,
                         inplace : bool=False) -> Tensor

torch.nn.functional.mse_loss(input : Tensor,
                             target : Tensor,
                             size_average : Optional[bool],
                             reduce : Optional[bool],
                             reduction : str=mean,
                             weight : Optional[Tensor]) -> Tensor

torch.nn.functional.multi_head_attention_forward(query : Tensor,
                                                 key : Tensor,
                                                 value : Tensor,
                                                 embed_dim_to_check : int,
                                                 num_heads : int,
                                                 in_proj_weight : Optional[Tensor],
                                                 in_proj_bias : Optional[Tensor],
                                                 bias_k : Optional[Tensor],
                                                 bias_v : Optional[Tensor],
                                                 add_zero_attn : bool,
                                                 dropout_p : float,
                                                 out_proj_weight : Tensor,
                                                 out_proj_bias : Optional[Tensor],
                                                 training : bool=True,
                                                 key_padding_mask : Optional[Tensor],
                                                 need_weights : bool=True,
                                                 attn_mask : Optional[Tensor],
                                                 use_separate_proj_weight : bool=False,
                                                 q_proj_weight : Optional[Tensor],
                                                 k_proj_weight : Optional[Tensor],
                                                 v_proj_weight : Optional[Tensor],
                                                 static_k : Optional[Tensor],
                                                 static_v : Optional[Tensor],
                                                 average_attn_weights : bool=True,
                                                 is_causal : bool=False) -> Tuple[Tensor, Optional[Tensor]]

torch.nn.functional.multi_margin_loss(input : Tensor,
                                      target : Tensor,
                                      p : int=1,
                                      margin : float=1.0,
                                      weight : Optional[Tensor],
                                      size_average : Optional[bool],
                                      reduce : Optional[bool],
                                      reduction : str=mean) -> Tensor

torch.nn.functional.multilabel_margin_loss(input : Tensor,
                                           target : Tensor,
                                           size_average : Optional[bool],
                                           reduce : Optional[bool],
                                           reduction : str=mean) -> Tensor

torch.nn.functional.multilabel_soft_margin_loss(input : Tensor,
                                                target : Tensor,
                                                weight : Optional[Tensor],
                                                size_average : Optional[bool],
                                                reduce : Optional[bool],
                                                reduction : str=mean) -> Tensor

torch.nn.functional.nll_loss(input : Tensor,
                             target : Tensor,
                             weight : Optional[Tensor],
                             size_average : Optional[bool],
                             ignore_index : int=-100,
                             reduce : Optional[bool],
                             reduction : str=mean) -> Tensor

torch.nn.functional.normalize(input : Tensor,
                              p : float=2.0,
                              dim : int=1,
                              eps : float=1e-12,
                              out : Optional[Tensor]) -> Tensor

torch.nn.functional.pad(input : Tensor,
                        pad : List[int],
                        mode : str=constant,
                        value : Optional[float]) -> Tensor

torch.nn.functional.poisson_nll_loss(input : Tensor,
                                     target : Tensor,
                                     log_input : bool=True,
                                     full : bool=False,
                                     size_average : Optional[bool],
                                     eps : float=1e-08,
                                     reduce : Optional[bool],
                                     reduction : str=mean) -> Tensor

torch.nn.functional.relu(input : Tensor,
                         inplace : bool=False) -> Tensor

torch.nn.functional.relu6(input : Tensor,
                          inplace : bool=False) -> Tensor

torch.nn.functional.rms_norm(input : Tensor,
                             normalized_shape : List[int],
                             weight : Optional[Tensor],
                             eps : Optional[float]) -> Tensor

torch.nn.functional.rrelu(input : Tensor,
                          lower : float=0.125,
                          upper : float=0.3333333333333333,
                          training : bool=False,
                          inplace : bool=False) -> Tensor

torch.nn.functional.selu(input : Tensor,
                         inplace : bool=False) -> Tensor

torch.nn.functional.sigmoid(input : Tensor) -> Tensor

torch.nn.functional.silu(input : Tensor,
                         inplace : bool=False) -> Tensor

torch.nn.functional.smooth_l1_loss(input : Tensor,
                                   target : Tensor,
                                   size_average : Optional[bool],
                                   reduce : Optional[bool],
                                   reduction : str=mean,
                                   beta : float=1.0) -> Tensor

torch.nn.functional.soft_margin_loss(input : Tensor,
                                     target : Tensor,
                                     size_average : Optional[bool],
                                     reduce : Optional[bool],
                                     reduction : str=mean) -> Tensor

torch.nn.functional.softmax(input : Tensor,
                            dim : Optional[int],
                            _stacklevel : int=3,
                            dtype : Optional[int]) -> Tensor

torch.nn.functional.softmin(input : Tensor,
                            dim : Optional[int],
                            _stacklevel : int=3,
                            dtype : Optional[int]) -> Tensor

torch.nn.functional.softsign(input : Tensor) -> Tensor

torch.nn.functional.tanh(input : Tensor) -> Tensor

torch.nn.functional.tanhshrink(input : Tensor) -> Tensor

torch.nn.functional.threshold(input : Tensor,
                              threshold : float,
                              value : float,
                              inplace : bool=False) -> Tensor

torch.nn.functional.triplet_margin_loss(anchor : Tensor,
                                        positive : Tensor,
                                        negative : Tensor,
                                        margin : float=1.0,
                                        p : float=2.0,
                                        eps : float=1e-06,
                                        swap : bool=False,
                                        size_average : Optional[bool],
                                        reduce : Optional[bool],
                                        reduction : str=mean) -> Tensor

torch.nn.functional.unfold(input : Tensor,
                           kernel_size : List[int],
                           dilation : List[int]=1,
                           padding : List[int]=0,
                           stride : List[int]=1) -> Tensor

torch.Generator(device : Optional[Device],
                seed : Optional[int]) -> Generator

torch.Size(sizes : List[int]) -> List[int]

torch.abs(self : Tensor) -> Tensor

torch.abs(self : Tensor,
          out : Tensor) -> Tensor

torch.abs_(self : Tensor) -> Tensor

torch.absolute(self : Tensor) -> Tensor

torch.absolute(self : Tensor,
               out : Tensor) -> Tensor

torch.acos(self : Tensor) -> Tensor

torch.acos(self : Tensor,
           out : Tensor) -> Tensor

torch.acos(a : int) -> float

torch.acos(a : float) -> float

torch.acos(a : complex) -> complex

torch.acos(a : number) -> number

torch.acos_(self : Tensor) -> Tensor

torch.acosh(self : Tensor) -> Tensor

torch.acosh(self : Tensor,
            out : Tensor) -> Tensor

torch.acosh(a : int) -> float

torch.acosh(a : float) -> float

torch.acosh(a : complex) -> complex

torch.acosh(a : number) -> number

torch.acosh_(self : Tensor) -> Tensor

torch.adaptive_avg_pool1d(self : Tensor,
                          output_size : List[int]) -> Tensor

torch.adaptive_avg_pool1d(self : Tensor,
                          output_size : List[int],
                          out : Tensor) -> Tensor

torch.adaptive_max_pool1d(self : Tensor,
                          output_size : List[int]) -> Tuple[Tensor, Tensor]

torch.add(self : Tensor,
          other : Tensor,
          alpha : number=1) -> Tensor

torch.add(self : Tensor,
          other : number,
          alpha : number=1) -> Tensor

torch.add(self : Tensor,
          other : Tensor,
          alpha : number=1,
          out : Tensor) -> Tensor

torch.add(self : Tensor,
          other : number,
          alpha : number=1,
          out : Tensor) -> Tensor

torch.add(a : List[t],
          b : List[t]) -> List[t]

torch.add(a : str,
          b : str) -> str

torch.add(a : int,
          b : int) -> int

torch.add(a : complex,
          b : complex) -> complex

torch.add(a : float,
          b : float) -> float

torch.add(a : int,
          b : complex) -> complex

torch.add(a : complex,
          b : int) -> complex

torch.add(a : float,
          b : complex) -> complex

torch.add(a : complex,
          b : float) -> complex

torch.add(a : int,
          b : float) -> float

torch.add(a : float,
          b : int) -> float

torch.add(a : number,
          b : number) -> number

torch.addbmm(self : Tensor,
             batch1 : Tensor,
             batch2 : Tensor,
             beta : number=1,
             alpha : number=1) -> Tensor

torch.addbmm(self : Tensor,
             batch1 : Tensor,
             batch2 : Tensor,
             beta : number=1,
             alpha : number=1,
             out : Tensor) -> Tensor

torch.addcdiv(self : Tensor,
              tensor1 : Tensor,
              tensor2 : Tensor,
              value : number=1) -> Tensor

torch.addcdiv(self : Tensor,
              tensor1 : Tensor,
              tensor2 : Tensor,
              value : number=1,
              out : Tensor) -> Tensor

torch.addcmul(self : Tensor,
              tensor1 : Tensor,
              tensor2 : Tensor,
              value : number=1) -> Tensor

torch.addcmul(self : Tensor,
              tensor1 : Tensor,
              tensor2 : Tensor,
              value : number=1,
              out : Tensor) -> Tensor

torch.addmm(self : Tensor,
            mat1 : Tensor,
            mat2 : Tensor,
            beta : number=1,
            alpha : number=1) -> Tensor

torch.addmm(self : Tensor,
            mat1 : Tensor,
            mat2 : Tensor,
            beta : number=1,
            alpha : number=1,
            out : Tensor) -> Tensor

torch.addmv(self : Tensor,
            mat : Tensor,
            vec : Tensor,
            beta : number=1,
            alpha : number=1) -> Tensor

torch.addmv(self : Tensor,
            mat : Tensor,
            vec : Tensor,
            beta : number=1,
            alpha : number=1,
            out : Tensor) -> Tensor

torch.addmv_(self : Tensor,
             mat : Tensor,
             vec : Tensor,
             beta : number=1,
             alpha : number=1) -> Tensor

torch.addr(self : Tensor,
           vec1 : Tensor,
           vec2 : Tensor,
           beta : number=1,
           alpha : number=1) -> Tensor

torch.addr(self : Tensor,
           vec1 : Tensor,
           vec2 : Tensor,
           beta : number=1,
           alpha : number=1,
           out : Tensor) -> Tensor

torch.adjoint(self : Tensor) -> Tensor

torch.affine_grid_generator(theta : Tensor,
                            size : List[int],
                            align_corners : bool) -> Tensor

torch.affine_grid_generator(theta : Tensor,
                            size : List[int],
                            align_corners : bool,
                            out : Tensor) -> Tensor

torch.alias_copy(self : Tensor) -> Tensor

torch.alias_copy(self : Tensor,
                 out : Tensor) -> Tensor

torch.align_tensors(tensors : List[Tensor]) -> List[Tensor]

torch.all(self : Tensor) -> Tensor

torch.all(self : Tensor,
          dim : int,
          keepdim : bool=False) -> Tensor

torch.all(self : Tensor,
          dim : Optional[List[int]],
          keepdim : bool=False) -> Tensor

torch.all(self : Tensor,
          dim : int,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.all(self : Tensor,
          dim : Optional[List[int]],
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.all(self : Tensor,
          out : Tensor) -> Tensor

torch.all(self : Tensor,
          dim : str,
          keepdim : bool=False) -> Tensor

torch.all(self : Tensor,
          dim : str,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.all(self : List[int]) -> bool

torch.all(self : List[float]) -> bool

torch.all(self : List[bool]) -> bool

torch.allclose(self : Tensor,
               other : Tensor,
               rtol : float=1e-05,
               atol : float=1e-08,
               equal_nan : bool=False) -> bool

torch.alpha_dropout(input : Tensor,
                    p : float,
                    train : bool) -> Tensor

torch.alpha_dropout_(self : Tensor,
                     p : float,
                     train : bool) -> Tensor

torch.amax(self : Tensor,
           dim : List[int]=[],
           keepdim : bool=False) -> Tensor

torch.amax(self : Tensor,
           dim : List[int]=[],
           keepdim : bool=False,
           out : Tensor) -> Tensor

torch.amin(self : Tensor,
           dim : List[int]=[],
           keepdim : bool=False) -> Tensor

torch.amin(self : Tensor,
           dim : List[int]=[],
           keepdim : bool=False,
           out : Tensor) -> Tensor

torch.aminmax(self : Tensor,
              dim : Optional[int],
              keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.aminmax(self : Tensor,
              dim : Optional[int],
              keepdim : bool=False,
              min : Tensor,
              max : Tensor) -> Tuple[Tensor, Tensor]

torch.angle(self : Tensor) -> Tensor

torch.angle(self : Tensor,
            out : Tensor) -> Tensor

torch.angle(a : int) -> float

torch.angle(a : float) -> float

torch.angle(a : complex) -> float

torch.angle(a : number) -> number

torch.any(self : Tensor) -> Tensor

torch.any(self : Tensor,
          dim : int,
          keepdim : bool=False) -> Tensor

torch.any(self : Tensor,
          dim : Optional[List[int]],
          keepdim : bool=False) -> Tensor

torch.any(self : Tensor,
          dim : int,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.any(self : Tensor,
          dim : Optional[List[int]],
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.any(self : Tensor,
          out : Tensor) -> Tensor

torch.any(self : Tensor,
          dim : str,
          keepdim : bool=False) -> Tensor

torch.any(self : Tensor,
          dim : str,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.any(self : List[str]) -> bool

torch.any(self : List[int]) -> bool

torch.any(self : List[float]) -> bool

torch.any(self : List[bool]) -> bool

torch.arange(end : number,
             dtype : Optional[int],
             layout : Optional[int],
             device : Optional[Device],
             pin_memory : Optional[bool]) -> Tensor

torch.arange(start : number,
             end : number,
             dtype : Optional[int],
             layout : Optional[int],
             device : Optional[Device],
             pin_memory : Optional[bool]) -> Tensor

torch.arange(start : number,
             end : number,
             step : number=1,
             dtype : Optional[int],
             layout : Optional[int],
             device : Optional[Device],
             pin_memory : Optional[bool]) -> Tensor

torch.arange(start : number,
             end : number,
             step : number=1,
             out : Tensor) -> Tensor

torch.arange(end : number,
             out : Tensor) -> Tensor

torch.arccos(self : Tensor) -> Tensor

torch.arccos(self : Tensor,
             out : Tensor) -> Tensor

torch.arccos_(self : Tensor) -> Tensor

torch.arccosh(self : Tensor) -> Tensor

torch.arccosh(self : Tensor,
              out : Tensor) -> Tensor

torch.arccosh_(self : Tensor) -> Tensor

torch.arcsin(self : Tensor) -> Tensor

torch.arcsin(self : Tensor,
             out : Tensor) -> Tensor

torch.arcsin_(self : Tensor) -> Tensor

torch.arcsinh(self : Tensor) -> Tensor

torch.arcsinh(self : Tensor,
              out : Tensor) -> Tensor

torch.arcsinh_(self : Tensor) -> Tensor

torch.arctan(self : Tensor) -> Tensor

torch.arctan(self : Tensor,
             out : Tensor) -> Tensor

torch.arctan2(self : Tensor,
              other : Tensor) -> Tensor

torch.arctan2(self : Tensor,
              other : Tensor,
              out : Tensor) -> Tensor

torch.arctan_(self : Tensor) -> Tensor

torch.arctanh(self : Tensor) -> Tensor

torch.arctanh(self : Tensor,
              out : Tensor) -> Tensor

torch.arctanh_(self : Tensor) -> Tensor

torch.argmax(self : Tensor,
             dim : Optional[int],
             keepdim : bool=False) -> Tensor

torch.argmax(self : Tensor,
             dim : Optional[int],
             keepdim : bool=False,
             out : Tensor) -> Tensor

torch.argmin(self : Tensor,
             dim : Optional[int],
             keepdim : bool=False) -> Tensor

torch.argmin(self : Tensor,
             dim : Optional[int],
             keepdim : bool=False,
             out : Tensor) -> Tensor

torch.argsort(self : Tensor,
              dim : int=-1,
              descending : bool=False) -> Tensor

torch.argsort(self : Tensor,
              stable : bool,
              dim : int=-1,
              descending : bool=False) -> Tensor

torch.argsort(self : Tensor,
              stable : bool,
              dim : int=-1,
              descending : bool=False,
              out : Tensor) -> Tensor

torch.argsort(self : Tensor,
              dim : str,
              descending : bool=False) -> Tensor

torch.argwhere(self : Tensor) -> Tensor

torch.as_strided(self : Tensor,
                 size : List[int],
                 stride : List[int],
                 storage_offset : Optional[int]) -> Tensor

torch.as_strided_(self : Tensor,
                  size : List[int],
                  stride : List[int],
                  storage_offset : Optional[int]) -> Tensor

torch.as_strided_copy(self : Tensor,
                      size : List[int],
                      stride : List[int],
                      storage_offset : Optional[int]) -> Tensor

torch.as_strided_copy(self : Tensor,
                      size : List[int],
                      stride : List[int],
                      storage_offset : Optional[int],
                      out : Tensor) -> Tensor

torch.as_strided_scatter(self : Tensor,
                         src : Tensor,
                         size : List[int],
                         stride : List[int],
                         storage_offset : Optional[int]) -> Tensor

torch.as_strided_scatter(self : Tensor,
                         src : Tensor,
                         size : List[int],
                         stride : List[int],
                         storage_offset : Optional[int],
                         out : Tensor) -> Tensor

torch.as_tensor(t : bool,
                dtype : Optional[int],
                device : Optional[Device]) -> Tensor

torch.as_tensor(t : float,
                dtype : Optional[int],
                device : Optional[Device]) -> Tensor

torch.as_tensor(t : int,
                dtype : Optional[int],
                device : Optional[Device]) -> Tensor

torch.as_tensor(t : complex,
                dtype : Optional[int],
                device : Optional[Device]) -> Tensor

torch.as_tensor(data : Tensor,
                dtype : Optional[int],
                device : Optional[Device]) -> Tensor

torch.as_tensor(data : List[t],
                dtype : Optional[int],
                device : Optional[Device]) -> Tensor

torch.asin(self : Tensor) -> Tensor

torch.asin(self : Tensor,
           out : Tensor) -> Tensor

torch.asin(a : int) -> float

torch.asin(a : float) -> float

torch.asin(a : complex) -> complex

torch.asin(a : number) -> number

torch.asin_(self : Tensor) -> Tensor

torch.asinh(self : Tensor) -> Tensor

torch.asinh(self : Tensor,
            out : Tensor) -> Tensor

torch.asinh(a : int) -> float

torch.asinh(a : float) -> float

torch.asinh(a : complex) -> complex

torch.asinh(a : number) -> number

torch.asinh_(self : Tensor) -> Tensor

torch.atan(self : Tensor) -> Tensor

torch.atan(self : Tensor,
           out : Tensor) -> Tensor

torch.atan(a : int) -> float

torch.atan(a : float) -> float

torch.atan(a : complex) -> complex

torch.atan(a : number) -> number

torch.atan2(self : Tensor,
            other : Tensor) -> Tensor

torch.atan2(self : Tensor,
            other : Tensor,
            out : Tensor) -> Tensor

torch.atan2(a : int,
            b : int) -> float

torch.atan2(a : float,
            b : float) -> float

torch.atan2(a : int,
            b : float) -> float

torch.atan2(a : float,
            b : int) -> float

torch.atan2(a : number,
            b : number) -> float

torch.atan_(self : Tensor) -> Tensor

torch.atanh(self : Tensor) -> Tensor

torch.atanh(self : Tensor,
            out : Tensor) -> Tensor

torch.atanh(a : int) -> float

torch.atanh(a : float) -> float

torch.atanh(a : complex) -> complex

torch.atanh(a : number) -> number

torch.atanh_(self : Tensor) -> Tensor

torch.atleast_1d(self : Tensor) -> Tensor

torch.atleast_1d(tensors : List[Tensor]) -> List[Tensor]

torch.atleast_2d(self : Tensor) -> Tensor

torch.atleast_2d(tensors : List[Tensor]) -> List[Tensor]

torch.atleast_3d(self : Tensor) -> Tensor

torch.atleast_3d(tensors : List[Tensor]) -> List[Tensor]

torch.avg_pool1d(self : Tensor,
                 kernel_size : List[int],
                 stride : List[int]=[],
                 padding : List[int]=[0],
                 ceil_mode : bool=False,
                 count_include_pad : bool=True) -> Tensor

torch.avg_pool1d(self : Tensor,
                 kernel_size : List[int],
                 stride : List[int]=[],
                 padding : List[int]=[0],
                 ceil_mode : bool=False,
                 count_include_pad : bool=True,
                 out : Tensor) -> Tensor

torch.baddbmm(self : Tensor,
              batch1 : Tensor,
              batch2 : Tensor,
              beta : number=1,
              alpha : number=1) -> Tensor

torch.baddbmm(self : Tensor,
              batch1 : Tensor,
              batch2 : Tensor,
              beta : number=1,
              alpha : number=1,
              out : Tensor) -> Tensor

torch.bartlett_window(window_length : int,
                      dtype : Optional[int],
                      layout : Optional[int],
                      device : Optional[Device],
                      pin_memory : Optional[bool]) -> Tensor

torch.bartlett_window(window_length : int,
                      periodic : bool,
                      dtype : Optional[int],
                      layout : Optional[int],
                      device : Optional[Device],
                      pin_memory : Optional[bool]) -> Tensor

torch.bartlett_window(window_length : int,
                      out : Tensor) -> Tensor

torch.bartlett_window(window_length : int,
                      periodic : bool,
                      out : Tensor) -> Tensor

torch.batch_norm(input : Tensor,
                 weight : Optional[Tensor],
                 bias : Optional[Tensor],
                 running_mean : Optional[Tensor],
                 running_var : Optional[Tensor],
                 training : bool,
                 momentum : float,
                 eps : float,
                 cudnn_enabled : bool) -> Tensor

torch.batch_norm_backward_elemt(grad_out : Tensor,
                                input : Tensor,
                                mean : Tensor,
                                invstd : Tensor,
                                weight : Optional[Tensor],
                                sum_dy : Tensor,
                                sum_dy_xmu : Tensor,
                                count : Tensor,
                                out : Tensor) -> Tensor

torch.batch_norm_backward_elemt(grad_out : Tensor,
                                input : Tensor,
                                mean : Tensor,
                                invstd : Tensor,
                                weight : Optional[Tensor],
                                sum_dy : Tensor,
                                sum_dy_xmu : Tensor,
                                count : Tensor) -> Tensor

torch.batch_norm_backward_reduce(grad_out : Tensor,
                                 input : Tensor,
                                 mean : Tensor,
                                 invstd : Tensor,
                                 weight : Optional[Tensor],
                                 input_g : bool,
                                 weight_g : bool,
                                 bias_g : bool,
                                 out0 : Tensor,
                                 out1 : Tensor,
                                 out2 : Tensor,
                                 out3 : Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.batch_norm_backward_reduce(grad_out : Tensor,
                                 input : Tensor,
                                 mean : Tensor,
                                 invstd : Tensor,
                                 weight : Optional[Tensor],
                                 input_g : bool,
                                 weight_g : bool,
                                 bias_g : bool) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.batch_norm_elemt(input : Tensor,
                       weight : Optional[Tensor],
                       bias : Optional[Tensor],
                       mean : Tensor,
                       invstd : Tensor,
                       eps : float,
                       out : Tensor) -> Tensor

torch.batch_norm_elemt(input : Tensor,
                       weight : Optional[Tensor],
                       bias : Optional[Tensor],
                       mean : Tensor,
                       invstd : Tensor,
                       eps : float) -> Tensor

torch.batch_norm_gather_stats(input : Tensor,
                              mean : Tensor,
                              invstd : Tensor,
                              running_mean : Optional[Tensor],
                              running_var : Optional[Tensor],
                              momentum : float,
                              eps : float,
                              count : int,
                              out0 : Tensor,
                              out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.batch_norm_gather_stats(input : Tensor,
                              mean : Tensor,
                              invstd : Tensor,
                              running_mean : Optional[Tensor],
                              running_var : Optional[Tensor],
                              momentum : float,
                              eps : float,
                              count : int) -> Tuple[Tensor, Tensor]

torch.batch_norm_gather_stats_with_counts(input : Tensor,
                                          mean : Tensor,
                                          invstd : Tensor,
                                          running_mean : Optional[Tensor],
                                          running_var : Optional[Tensor],
                                          momentum : float,
                                          eps : float,
                                          counts : Tensor,
                                          out0 : Tensor,
                                          out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.batch_norm_gather_stats_with_counts(input : Tensor,
                                          mean : Tensor,
                                          invstd : Tensor,
                                          running_mean : Optional[Tensor],
                                          running_var : Optional[Tensor],
                                          momentum : float,
                                          eps : float,
                                          counts : Tensor) -> Tuple[Tensor, Tensor]

torch.batch_norm_stats(input : Tensor,
                       eps : float,
                       out0 : Tensor,
                       out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.batch_norm_stats(input : Tensor,
                       eps : float) -> Tuple[Tensor, Tensor]

torch.batch_norm_update_stats(input : Tensor,
                              running_mean : Optional[Tensor],
                              running_var : Optional[Tensor],
                              momentum : float) -> Tuple[Tensor, Tensor]

torch.batch_norm_update_stats(input : Tensor,
                              running_mean : Optional[Tensor],
                              running_var : Optional[Tensor],
                              momentum : float,
                              out0 : Tensor,
                              out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.bernoulli(self : Tensor,
                generator : Optional[Generator]) -> Tensor

torch.bernoulli(self : Tensor,
                generator : Optional[Generator],
                out : Tensor) -> Tensor

torch.bernoulli(self : Tensor,
                p : float,
                generator : Optional[Generator]) -> Tensor

torch.bernoulli(self : Tensor,
                p : Tensor,
                generator : Optional[Generator]) -> Tensor

torch.bernoulli(self : Tensor,
                p : Tensor,
                generator : Optional[Generator],
                out : Tensor) -> Tensor

torch.bernoulli(self : Tensor,
                p : float=0.5,
                generator : Optional[Generator],
                out : Tensor) -> Tensor

torch.bilinear(input1 : Tensor,
               input2 : Tensor,
               weight : Tensor,
               bias : Optional[Tensor]) -> Tensor

torch.binary_cross_entropy_with_logits(self : Tensor,
                                       target : Tensor,
                                       weight : Optional[Tensor],
                                       pos_weight : Optional[Tensor],
                                       reduction : int=1) -> Tensor

torch.binary_cross_entropy_with_logits(self : Tensor,
                                       target : Tensor,
                                       weight : Optional[Tensor],
                                       pos_weight : Optional[Tensor],
                                       reduction : int=1,
                                       out : Tensor) -> Tensor

torch.bincount(self : Tensor,
               weights : Optional[Tensor],
               minlength : int=0) -> Tensor

torch.bincount(self : Tensor,
               weights : Optional[Tensor],
               minlength : int=0,
               out : Tensor) -> Tensor

torch.binomial(count : Tensor,
               prob : Tensor,
               generator : Optional[Generator]) -> Tensor

torch.binomial(count : Tensor,
               prob : Tensor,
               generator : Optional[Generator],
               out : Tensor) -> Tensor

torch.bitwise_and(self : Tensor,
                  other : Tensor) -> Tensor

torch.bitwise_and(self : Tensor,
                  other : number) -> Tensor

torch.bitwise_and(self : number,
                  other : Tensor) -> Tensor

torch.bitwise_and(self : Tensor,
                  other : Tensor,
                  out : Tensor) -> Tensor

torch.bitwise_and(self : Tensor,
                  other : number,
                  out : Tensor) -> Tensor

torch.bitwise_and(self : number,
                  other : Tensor,
                  out : Tensor) -> Tensor

torch.bitwise_left_shift(self : Tensor,
                         other : Tensor) -> Tensor

torch.bitwise_left_shift(self : Tensor,
                         other : number) -> Tensor

torch.bitwise_left_shift(self : number,
                         other : Tensor) -> Tensor

torch.bitwise_left_shift(self : Tensor,
                         other : Tensor,
                         out : Tensor) -> Tensor

torch.bitwise_left_shift(self : Tensor,
                         other : number,
                         out : Tensor) -> Tensor

torch.bitwise_left_shift(self : number,
                         other : Tensor,
                         out : Tensor) -> Tensor

torch.bitwise_not(self : Tensor) -> Tensor

torch.bitwise_not(self : Tensor,
                  out : Tensor) -> Tensor

torch.bitwise_or(self : Tensor,
                 other : Tensor) -> Tensor

torch.bitwise_or(self : Tensor,
                 other : number) -> Tensor

torch.bitwise_or(self : number,
                 other : Tensor) -> Tensor

torch.bitwise_or(self : Tensor,
                 other : Tensor,
                 out : Tensor) -> Tensor

torch.bitwise_or(self : Tensor,
                 other : number,
                 out : Tensor) -> Tensor

torch.bitwise_or(self : number,
                 other : Tensor,
                 out : Tensor) -> Tensor

torch.bitwise_right_shift(self : Tensor,
                          other : Tensor) -> Tensor

torch.bitwise_right_shift(self : Tensor,
                          other : number) -> Tensor

torch.bitwise_right_shift(self : number,
                          other : Tensor) -> Tensor

torch.bitwise_right_shift(self : Tensor,
                          other : Tensor,
                          out : Tensor) -> Tensor

torch.bitwise_right_shift(self : Tensor,
                          other : number,
                          out : Tensor) -> Tensor

torch.bitwise_right_shift(self : number,
                          other : Tensor,
                          out : Tensor) -> Tensor

torch.bitwise_xor(self : Tensor,
                  other : Tensor) -> Tensor

torch.bitwise_xor(self : Tensor,
                  other : number) -> Tensor

torch.bitwise_xor(self : number,
                  other : Tensor) -> Tensor

torch.bitwise_xor(self : Tensor,
                  other : Tensor,
                  out : Tensor) -> Tensor

torch.bitwise_xor(self : Tensor,
                  other : number,
                  out : Tensor) -> Tensor

torch.bitwise_xor(self : number,
                  other : Tensor,
                  out : Tensor) -> Tensor

torch.blackman_window(window_length : int,
                      dtype : Optional[int],
                      layout : Optional[int],
                      device : Optional[Device],
                      pin_memory : Optional[bool]) -> Tensor

torch.blackman_window(window_length : int,
                      periodic : bool,
                      dtype : Optional[int],
                      layout : Optional[int],
                      device : Optional[Device],
                      pin_memory : Optional[bool]) -> Tensor

torch.blackman_window(window_length : int,
                      out : Tensor) -> Tensor

torch.blackman_window(window_length : int,
                      periodic : bool,
                      out : Tensor) -> Tensor

torch.block_diag(tensors : List[Tensor]) -> Tensor

torch.block_diag(tensors : List[Tensor],
                 out : Tensor) -> Tensor

torch.bmm(self : Tensor,
          mat2 : Tensor) -> Tensor

torch.bmm(self : Tensor,
          mat2 : Tensor,
          out : Tensor) -> Tensor

torch.broadcast_tensors(tensors : List[Tensor]) -> List[Tensor]

torch.broadcast_to(self : Tensor,
                   size : List[int]) -> Tensor

torch.bucketize(self : Tensor,
                boundaries : Tensor,
                out_int32 : bool=False,
                right : bool=False) -> Tensor

torch.bucketize(self : number,
                boundaries : Tensor,
                out_int32 : bool=False,
                right : bool=False) -> Tensor

torch.bucketize(self : Tensor,
                boundaries : Tensor,
                out_int32 : bool=False,
                right : bool=False,
                out : Tensor) -> Tensor

torch.bucketize(self : number,
                boundaries : Tensor,
                out_int32 : bool=False,
                right : bool=False,
                out : Tensor) -> Tensor

torch.can_cast(from_ : int,
               to : int) -> bool

torch.cartesian_prod(tensors : List[Tensor]) -> Tensor

torch.cat(tensors : List[Tensor],
          dim : int=0) -> Tensor

torch.cat(tensors : List[Tensor],
          dim : str) -> Tensor

torch.cat(tensors : List[Tensor],
          dim : str,
          out : Tensor) -> Tensor

torch.cat(tensors : List[Tensor],
          dim : int=0,
          out : Tensor) -> Tensor

torch.ccol_indices_copy(self : Tensor) -> Tensor

torch.ccol_indices_copy(self : Tensor,
                        out : Tensor) -> Tensor

torch.ceil(self : Tensor) -> Tensor

torch.ceil(self : Tensor,
           out : Tensor) -> Tensor

torch.ceil(a : int) -> int

torch.ceil(a : float) -> int

torch.ceil(a : number) -> number

torch.ceil_(self : Tensor) -> Tensor

torch.celu(self : Tensor,
           alpha : number=1.0) -> Tensor

torch.celu(self : Tensor,
           alpha : number=1.0,
           out : Tensor) -> Tensor

torch.celu_(self : Tensor,
            alpha : number=1.0) -> Tensor

torch.chain_matmul(matrices : List[Tensor]) -> Tensor

torch.chain_matmul(matrices : List[Tensor],
                   out : Tensor) -> Tensor

torch.channel_shuffle(self : Tensor,
                      groups : int) -> Tensor

torch.channel_shuffle(self : Tensor,
                      groups : int,
                      out : Tensor) -> Tensor

torch.cholesky(self : Tensor,
               upper : bool=False) -> Tensor

torch.cholesky(self : Tensor,
               upper : bool=False,
               out : Tensor) -> Tensor

torch.cholesky_inverse(self : Tensor,
                       upper : bool=False) -> Tensor

torch.cholesky_inverse(self : Tensor,
                       upper : bool=False,
                       out : Tensor) -> Tensor

torch.cholesky_solve(self : Tensor,
                     input2 : Tensor,
                     upper : bool=False) -> Tensor

torch.cholesky_solve(self : Tensor,
                     input2 : Tensor,
                     upper : bool=False,
                     out : Tensor) -> Tensor

torch.choose_qparams_optimized(input : Tensor,
                               numel : int,
                               n_bins : int,
                               ratio : float,
                               bit_width : int) -> Tuple[Tensor, Tensor]

torch.chunk(self : Tensor,
            chunks : int,
            dim : int=0) -> List[Tensor]

torch.clamp(self : Tensor,
            min : Optional[number],
            max : Optional[number]) -> Tensor

torch.clamp(self : Tensor,
            min : Optional[Tensor],
            max : Optional[Tensor]) -> Tensor

torch.clamp(self : Tensor,
            min : Optional[number],
            max : Optional[number],
            out : Tensor) -> Tensor

torch.clamp(self : Tensor,
            min : Optional[Tensor],
            max : Optional[Tensor],
            out : Tensor) -> Tensor

torch.clamp_(self : Tensor,
             min : Optional[number],
             max : Optional[number]) -> Tensor

torch.clamp_(self : Tensor,
             min : Optional[Tensor],
             max : Optional[Tensor]) -> Tensor

torch.clamp_max(self : Tensor,
                max : number) -> Tensor

torch.clamp_max(self : Tensor,
                max : Tensor) -> Tensor

torch.clamp_max(self : Tensor,
                max : number,
                out : Tensor) -> Tensor

torch.clamp_max(self : Tensor,
                max : Tensor,
                out : Tensor) -> Tensor

torch.clamp_max_(self : Tensor,
                 max : number) -> Tensor

torch.clamp_max_(self : Tensor,
                 max : Tensor) -> Tensor

torch.clamp_min(self : Tensor,
                min : number) -> Tensor

torch.clamp_min(self : Tensor,
                min : Tensor) -> Tensor

torch.clamp_min(self : Tensor,
                min : number,
                out : Tensor) -> Tensor

torch.clamp_min(self : Tensor,
                min : Tensor,
                out : Tensor) -> Tensor

torch.clamp_min_(self : Tensor,
                 min : number) -> Tensor

torch.clamp_min_(self : Tensor,
                 min : Tensor) -> Tensor

torch.clip(self : Tensor,
           min : Optional[number],
           max : Optional[number]) -> Tensor

torch.clip(self : Tensor,
           min : Optional[Tensor],
           max : Optional[Tensor]) -> Tensor

torch.clip(self : Tensor,
           min : Optional[number],
           max : Optional[number],
           out : Tensor) -> Tensor

torch.clip(self : Tensor,
           min : Optional[Tensor],
           max : Optional[Tensor],
           out : Tensor) -> Tensor

torch.clip_(self : Tensor,
            min : Optional[number],
            max : Optional[number]) -> Tensor

torch.clip_(self : Tensor,
            min : Optional[Tensor],
            max : Optional[Tensor]) -> Tensor

torch.clone(self : Tensor,
            memory_format : Optional[int]) -> Tensor

torch.clone(self : Tensor,
            memory_format : Optional[int],
            out : Tensor) -> Tensor

torch.col_indices_copy(self : Tensor) -> Tensor

torch.col_indices_copy(self : Tensor,
                       out : Tensor) -> Tensor

torch.column_stack(tensors : List[Tensor]) -> Tensor

torch.column_stack(tensors : List[Tensor],
                   out : Tensor) -> Tensor

torch.combinations(self : Tensor,
                   r : int=2,
                   with_replacement : bool=False) -> Tensor

torch.complex(real : Tensor,
              imag : Tensor) -> Tensor

torch.complex(real : Tensor,
              imag : Tensor,
              out : Tensor) -> Tensor

torch.concat(tensors : List[Tensor],
             dim : int=0) -> Tensor

torch.concat(tensors : List[Tensor],
             dim : int=0,
             out : Tensor) -> Tensor

torch.concat(tensors : List[Tensor],
             dim : str) -> Tensor

torch.concat(tensors : List[Tensor],
             dim : str,
             out : Tensor) -> Tensor

torch.concatenate(tensors : List[Tensor],
                  dim : int=0) -> Tensor

torch.concatenate(tensors : List[Tensor],
                  dim : int=0,
                  out : Tensor) -> Tensor

torch.concatenate(tensors : List[Tensor],
                  dim : str) -> Tensor

torch.concatenate(tensors : List[Tensor],
                  dim : str,
                  out : Tensor) -> Tensor

torch.conj(self : Tensor) -> Tensor

torch.conj_physical(self : Tensor) -> Tensor

torch.conj_physical(self : Tensor,
                    out : Tensor) -> Tensor

torch.conj_physical_(self : Tensor) -> Tensor

torch.constant_pad_nd(self : Tensor,
                      pad : List[int],
                      value : number=0) -> Tensor

torch.constant_pad_nd(self : Tensor,
                      pad : List[int],
                      value : number=0,
                      out : Tensor) -> Tensor

torch.conv1d(input : Tensor,
             weight : Tensor,
             bias : Optional[Tensor],
             stride : List[int]=[1],
             padding : List[int]=[0],
             dilation : List[int]=[1],
             groups : int=1) -> Tensor

torch.conv1d(input : Tensor,
             weight : Tensor,
             bias : Optional[Tensor],
             stride : List[int]=[1],
             padding : str=valid,
             dilation : List[int]=[1],
             groups : int=1) -> Tensor

torch.conv2d(input : Tensor,
             weight : Tensor,
             bias : Optional[Tensor],
             stride : List[int]=[1, 1],
             padding : List[int]=[0, 0],
             dilation : List[int]=[1, 1],
             groups : int=1) -> Tensor

torch.conv2d(input : Tensor,
             weight : Tensor,
             bias : Optional[Tensor],
             stride : List[int]=[1, 1],
             padding : str=valid,
             dilation : List[int]=[1, 1],
             groups : int=1) -> Tensor

torch.conv3d(input : Tensor,
             weight : Tensor,
             bias : Optional[Tensor],
             stride : List[int]=[1, 1, 1],
             padding : List[int]=[0, 0, 0],
             dilation : List[int]=[1, 1, 1],
             groups : int=1) -> Tensor

torch.conv3d(input : Tensor,
             weight : Tensor,
             bias : Optional[Tensor],
             stride : List[int]=[1, 1, 1],
             padding : str=valid,
             dilation : List[int]=[1, 1, 1],
             groups : int=1) -> Tensor

torch.conv_tbc(self : Tensor,
               weight : Tensor,
               bias : Tensor,
               pad : int=0) -> Tensor

torch.conv_tbc(self : Tensor,
               weight : Tensor,
               bias : Tensor,
               pad : int=0,
               out : Tensor) -> Tensor

torch.conv_transpose1d(input : Tensor,
                       weight : Tensor,
                       bias : Optional[Tensor],
                       stride : List[int]=[1],
                       padding : List[int]=[0],
                       output_padding : List[int]=[0],
                       groups : int=1,
                       dilation : List[int]=[1]) -> Tensor

torch.conv_transpose2d(input : Tensor,
                       weight : Tensor,
                       bias : Optional[Tensor],
                       stride : List[int]=[1, 1],
                       padding : List[int]=[0, 0],
                       output_padding : List[int]=[0, 0],
                       groups : int=1,
                       dilation : List[int]=[1, 1]) -> Tensor

torch.conv_transpose3d(input : Tensor,
                       weight : Tensor,
                       bias : Optional[Tensor],
                       stride : List[int]=[1, 1, 1],
                       padding : List[int]=[0, 0, 0],
                       output_padding : List[int]=[0, 0, 0],
                       groups : int=1,
                       dilation : List[int]=[1, 1, 1]) -> Tensor

torch.convolution(input : Tensor,
                  weight : Tensor,
                  bias : Optional[Tensor],
                  stride : List[int],
                  padding : List[int],
                  dilation : List[int],
                  transposed : bool,
                  output_padding : List[int],
                  groups : int) -> Tensor

torch.convolution(input : Tensor,
                  weight : Tensor,
                  bias : Optional[Tensor],
                  stride : List[int],
                  padding : List[int],
                  dilation : List[int],
                  transposed : bool,
                  output_padding : List[int],
                  groups : int,
                  out : Tensor) -> Tensor

torch.copysign(self : Tensor,
               other : Tensor) -> Tensor

torch.copysign(self : Tensor,
               other : number) -> Tensor

torch.copysign(self : Tensor,
               other : Tensor,
               out : Tensor) -> Tensor

torch.copysign(self : Tensor,
               other : number,
               out : Tensor) -> Tensor

torch.copysign(a : int,
               b : int) -> float

torch.copysign(a : float,
               b : float) -> float

torch.copysign(a : int,
               b : float) -> float

torch.copysign(a : float,
               b : int) -> float

torch.copysign(a : number,
               b : number) -> float

torch.corrcoef(self : Tensor) -> Tensor

torch.cos(self : Tensor) -> Tensor

torch.cos(self : Tensor,
          out : Tensor) -> Tensor

torch.cos(a : int) -> float

torch.cos(a : float) -> float

torch.cos(a : complex) -> complex

torch.cos(a : number) -> number

torch.cos_(self : Tensor) -> Tensor

torch.cosh(self : Tensor) -> Tensor

torch.cosh(self : Tensor,
           out : Tensor) -> Tensor

torch.cosh(a : int) -> float

torch.cosh(a : float) -> float

torch.cosh(a : complex) -> complex

torch.cosh(a : number) -> number

torch.cosh_(self : Tensor) -> Tensor

torch.cosine_embedding_loss(input1 : Tensor,
                            input2 : Tensor,
                            target : Tensor,
                            margin : float=0.0,
                            reduction : int=1) -> Tensor

torch.cosine_similarity(x1 : Tensor,
                        x2 : Tensor,
                        dim : int=1,
                        eps : float=1e-08) -> Tensor

torch.count_nonzero(self : Tensor,
                    dim : List[int]) -> Tensor

torch.count_nonzero(self : Tensor,
                    dim : List[int],
                    out : Tensor) -> Tensor

torch.count_nonzero(self : Tensor,
                    dim : Optional[int]) -> Tensor

torch.count_nonzero(self : Tensor,
                    dim : Optional[int],
                    out : Tensor) -> Tensor

torch.cov(self : Tensor,
          correction : int=1,
          fweights : Optional[Tensor],
          aweights : Optional[Tensor]) -> Tensor

torch.cross(self : Tensor,
            other : Tensor,
            dim : Optional[int]) -> Tensor

torch.cross(self : Tensor,
            other : Tensor,
            dim : Optional[int],
            out : Tensor) -> Tensor

torch.crow_indices_copy(self : Tensor) -> Tensor

torch.crow_indices_copy(self : Tensor,
                        out : Tensor) -> Tensor

torch.ctc_loss(log_probs : Tensor,
               targets : Tensor,
               input_lengths : List[int],
               target_lengths : List[int],
               blank : int=0,
               reduction : int=1,
               zero_infinity : bool=False) -> Tensor

torch.ctc_loss(log_probs : Tensor,
               targets : Tensor,
               input_lengths : Tensor,
               target_lengths : Tensor,
               blank : int=0,
               reduction : int=1,
               zero_infinity : bool=False) -> Tensor

torch.cudnn_affine_grid_generator(theta : Tensor,
                                  N : int,
                                  C : int,
                                  H : int,
                                  W : int,
                                  out : Tensor) -> Tensor

torch.cudnn_affine_grid_generator(theta : Tensor,
                                  N : int,
                                  C : int,
                                  H : int,
                                  W : int) -> Tensor

torch.cudnn_batch_norm(input : Tensor,
                       weight : Tensor,
                       bias : Optional[Tensor],
                       running_mean : Optional[Tensor],
                       running_var : Optional[Tensor],
                       training : bool,
                       exponential_average_factor : float,
                       epsilon : float) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.cudnn_batch_norm(input : Tensor,
                       weight : Tensor,
                       bias : Optional[Tensor],
                       running_mean : Optional[Tensor],
                       running_var : Optional[Tensor],
                       training : bool,
                       exponential_average_factor : float,
                       epsilon : float,
                       out0 : Tensor,
                       out1 : Tensor,
                       out2 : Tensor,
                       out3 : Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.cudnn_convolution(self : Tensor,
                        weight : Tensor,
                        padding : List[int],
                        stride : List[int],
                        dilation : List[int],
                        groups : int,
                        benchmark : bool,
                        deterministic : bool,
                        allow_tf32 : bool) -> Tensor

torch.cudnn_convolution(self : Tensor,
                        weight : Tensor,
                        padding : List[int],
                        stride : List[int],
                        dilation : List[int],
                        groups : int,
                        benchmark : bool,
                        deterministic : bool,
                        allow_tf32 : bool,
                        out : Tensor) -> Tensor

torch.cudnn_convolution_add_relu(self : Tensor,
                                 weight : Tensor,
                                 z : Tensor,
                                 alpha : Optional[number],
                                 bias : Optional[Tensor],
                                 stride : List[int],
                                 padding : List[int],
                                 dilation : List[int],
                                 groups : int,
                                 out : Tensor) -> Tensor

torch.cudnn_convolution_add_relu(self : Tensor,
                                 weight : Tensor,
                                 z : Tensor,
                                 alpha : Optional[number],
                                 bias : Optional[Tensor],
                                 stride : List[int],
                                 padding : List[int],
                                 dilation : List[int],
                                 groups : int) -> Tensor

torch.cudnn_convolution_relu(self : Tensor,
                             weight : Tensor,
                             bias : Optional[Tensor],
                             stride : List[int],
                             padding : List[int],
                             dilation : List[int],
                             groups : int,
                             out : Tensor) -> Tensor

torch.cudnn_convolution_relu(self : Tensor,
                             weight : Tensor,
                             bias : Optional[Tensor],
                             stride : List[int],
                             padding : List[int],
                             dilation : List[int],
                             groups : int) -> Tensor

torch.cudnn_convolution_transpose(self : Tensor,
                                  weight : Tensor,
                                  padding : List[int],
                                  output_padding : List[int],
                                  stride : List[int],
                                  dilation : List[int],
                                  groups : int,
                                  benchmark : bool,
                                  deterministic : bool,
                                  allow_tf32 : bool) -> Tensor

torch.cudnn_convolution_transpose(self : Tensor,
                                  weight : Tensor,
                                  padding : List[int],
                                  output_padding : List[int],
                                  stride : List[int],
                                  dilation : List[int],
                                  groups : int,
                                  benchmark : bool,
                                  deterministic : bool,
                                  allow_tf32 : bool,
                                  out : Tensor) -> Tensor

torch.cudnn_grid_sampler(self : Tensor,
                         grid : Tensor) -> Tensor

torch.cudnn_grid_sampler(self : Tensor,
                         grid : Tensor,
                         out : Tensor) -> Tensor

torch.cudnn_is_acceptable(self : Tensor) -> bool

torch.cummax(self : Tensor,
             dim : int) -> Tuple[Tensor, Tensor]

torch.cummax(self : Tensor,
             dim : str) -> Tuple[Tensor, Tensor]

torch.cummax(self : Tensor,
             dim : str,
             values : Tensor,
             indices : Tensor) -> Tuple[Tensor, Tensor]

torch.cummax(self : Tensor,
             dim : int,
             values : Tensor,
             indices : Tensor) -> Tuple[Tensor, Tensor]

torch.cummin(self : Tensor,
             dim : int) -> Tuple[Tensor, Tensor]

torch.cummin(self : Tensor,
             dim : str) -> Tuple[Tensor, Tensor]

torch.cummin(self : Tensor,
             dim : str,
             values : Tensor,
             indices : Tensor) -> Tuple[Tensor, Tensor]

torch.cummin(self : Tensor,
             dim : int,
             values : Tensor,
             indices : Tensor) -> Tuple[Tensor, Tensor]

torch.cumprod(self : Tensor,
              dim : int,
              dtype : Optional[int]) -> Tensor

torch.cumprod(self : Tensor,
              dim : str,
              dtype : Optional[int]) -> Tensor

torch.cumprod(self : Tensor,
              dim : str,
              dtype : Optional[int],
              out : Tensor) -> Tensor

torch.cumprod(self : Tensor,
              dim : int,
              dtype : Optional[int],
              out : Tensor) -> Tensor

torch.cumsum(self : Tensor,
             dim : int,
             dtype : Optional[int]) -> Tensor

torch.cumsum(self : Tensor,
             dim : str,
             dtype : Optional[int]) -> Tensor

torch.cumsum(self : Tensor,
             dim : str,
             dtype : Optional[int],
             out : Tensor) -> Tensor

torch.cumsum(self : Tensor,
             dim : int,
             dtype : Optional[int],
             out : Tensor) -> Tensor

torch.cumulative_trapezoid(y : Tensor,
                           x : Tensor,
                           dim : int=-1) -> Tensor

torch.cumulative_trapezoid(y : Tensor,
                           dx : number=1,
                           dim : int=-1) -> Tensor

torch.deg2rad(self : Tensor) -> Tensor

torch.deg2rad(self : Tensor,
              out : Tensor) -> Tensor

torch.deg2rad_(self : Tensor) -> Tensor

torch.dequantize(self : Tensor) -> Tensor

torch.dequantize(self : Tensor,
                 out : Tensor) -> Tensor

torch.dequantize(tensors : List[Tensor],
                 out : List[Tensor]) -> Tuple[]

torch.dequantize(tensors : List[Tensor]) -> List[Tensor]

torch.dequantize(qtensor : Tensor) -> Tensor

torch.dequantize(qtensors : List[Tensor]) -> List[Tensor]

torch.dequantize(tensors : Any) -> Any

torch.det(self : Tensor) -> Tensor

torch.detach(self : Tensor) -> Tensor

torch.detach_(self : Tensor) -> Tensor

torch.detach_copy(self : Tensor) -> Tensor

torch.detach_copy(self : Tensor,
                  out : Tensor) -> Tensor

torch.device(a : str) -> Device

torch.device(type : str,
             index : int) -> Device

torch.diag(self : Tensor,
           diagonal : int=0) -> Tensor

torch.diag(self : Tensor,
           diagonal : int=0,
           out : Tensor) -> Tensor

torch.diag_embed(self : Tensor,
                 offset : int=0,
                 dim1 : int=-2,
                 dim2 : int=-1) -> Tensor

torch.diag_embed(self : Tensor,
                 offset : int=0,
                 dim1 : int=-2,
                 dim2 : int=-1,
                 out : Tensor) -> Tensor

torch.diagflat(self : Tensor,
               offset : int=0) -> Tensor

torch.diagonal(self : Tensor,
               offset : int=0,
               dim1 : int=0,
               dim2 : int=1) -> Tensor

torch.diagonal(self : Tensor,
               outdim : str,
               dim1 : str,
               dim2 : str,
               offset : int=0) -> Tensor

torch.diagonal_copy(self : Tensor,
                    offset : int=0,
                    dim1 : int=0,
                    dim2 : int=1) -> Tensor

torch.diagonal_copy(self : Tensor,
                    offset : int=0,
                    dim1 : int=0,
                    dim2 : int=1,
                    out : Tensor) -> Tensor

torch.diagonal_scatter(self : Tensor,
                       src : Tensor,
                       offset : int=0,
                       dim1 : int=0,
                       dim2 : int=1) -> Tensor

torch.diagonal_scatter(self : Tensor,
                       src : Tensor,
                       offset : int=0,
                       dim1 : int=0,
                       dim2 : int=1,
                       out : Tensor) -> Tensor

torch.diff(self : Tensor,
           n : int=1,
           dim : int=-1,
           prepend : Optional[Tensor],
           append : Optional[Tensor]) -> Tensor

torch.diff(self : Tensor,
           n : int=1,
           dim : int=-1,
           prepend : Optional[Tensor],
           append : Optional[Tensor],
           out : Tensor) -> Tensor

torch.digamma(self : Tensor) -> Tensor

torch.digamma(self : Tensor,
              out : Tensor) -> Tensor

torch.dist(self : Tensor,
           other : Tensor,
           p : number=2) -> Tensor

torch.dist(self : Tensor,
           other : Tensor,
           p : number=2,
           out : Tensor) -> Tensor

torch.div(self : Tensor,
          other : Tensor) -> Tensor

torch.div(self : Tensor,
          other : number) -> Tensor

torch.div(self : Tensor,
          other : Tensor,
          rounding_mode : Optional[str]) -> Tensor

torch.div(self : Tensor,
          other : number,
          rounding_mode : Optional[str]) -> Tensor

torch.div(self : Tensor,
          other : Tensor,
          out : Tensor) -> Tensor

torch.div(self : Tensor,
          other : Tensor,
          rounding_mode : Optional[str],
          out : Tensor) -> Tensor

torch.div(self : Tensor,
          other : number,
          out : Tensor) -> Tensor

torch.div(self : Tensor,
          other : number,
          rounding_mode : Optional[str],
          out : Tensor) -> Tensor

torch.div(a : int,
          b : int) -> float

torch.div(a : complex,
          b : complex) -> complex

torch.div(a : float,
          b : float) -> float

torch.div(a : number,
          b : number) -> float

torch.divide(self : Tensor,
             other : Tensor) -> Tensor

torch.divide(self : Tensor,
             other : number) -> Tensor

torch.divide(self : Tensor,
             other : Tensor,
             rounding_mode : Optional[str]) -> Tensor

torch.divide(self : Tensor,
             other : number,
             rounding_mode : Optional[str]) -> Tensor

torch.divide(self : Tensor,
             other : Tensor,
             out : Tensor) -> Tensor

torch.divide(self : Tensor,
             other : Tensor,
             rounding_mode : Optional[str],
             out : Tensor) -> Tensor

torch.dot(self : Tensor,
          tensor : Tensor) -> Tensor

torch.dot(self : Tensor,
          tensor : Tensor,
          out : Tensor) -> Tensor

torch.dropout(input : Tensor,
              p : float,
              train : bool) -> Tensor

torch.dropout_(self : Tensor,
               p : float,
               train : bool) -> Tensor

torch.dsplit(self : Tensor,
             sections : int) -> List[Tensor]

torch.dsplit(self : Tensor,
             indices : List[int]) -> List[Tensor]

torch.dstack(tensors : List[Tensor]) -> Tensor

torch.dstack(tensors : List[Tensor],
             out : Tensor) -> Tensor

torch.einsum(equation : str,
             tensors : List[Tensor],
             path : Optional[List[int]]) -> Tensor

torch.einsum(a : Tensor) -> Tensor

torch.embedding(weight : Tensor,
                indices : Tensor,
                padding_idx : int=-1,
                scale_grad_by_freq : bool=False,
                sparse : bool=False) -> Tensor

torch.embedding(weight : Tensor,
                indices : Tensor,
                padding_idx : int=-1,
                scale_grad_by_freq : bool=False,
                sparse : bool=False,
                out : Tensor) -> Tensor

torch.embedding_bag(weight : Tensor,
                    indices : Tensor,
                    offsets : Tensor,
                    scale_grad_by_freq : bool=False,
                    mode : int=0,
                    sparse : bool=False,
                    per_sample_weights : Optional[Tensor],
                    include_last_offset : bool=False) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.embedding_bag(weight : Tensor,
                    indices : Tensor,
                    offsets : Tensor,
                    scale_grad_by_freq : bool,
                    mode : int,
                    sparse : bool,
                    per_sample_weights : Optional[Tensor],
                    include_last_offset : bool,
                    padding_idx : Optional[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.embedding_renorm_(self : Tensor,
                        indices : Tensor,
                        max_norm : float,
                        norm_type : float) -> Tensor

torch.empty(size : List[int],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool],
            memory_format : Optional[int]) -> Tensor

torch.empty(size : List[int],
            memory_format : Optional[int],
            out : Tensor) -> Tensor

torch.empty(size : List[int],
            names : Optional[List[str]],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool],
            memory_format : Optional[int]) -> Tensor

torch.empty(size : List[int],
            names : Optional[List[str]],
            memory_format : Optional[int],
            out : Tensor) -> Tensor

torch.empty_like(self : Tensor,
                 dtype : Optional[int],
                 layout : Optional[int],
                 device : Optional[Device],
                 pin_memory : Optional[bool],
                 memory_format : Optional[int]) -> Tensor

torch.empty_like(self : Tensor,
                 memory_format : Optional[int],
                 out : Tensor) -> Tensor

torch.empty_permuted(size : List[int],
                     physical_layout : List[int],
                     dtype : Optional[int],
                     layout : Optional[int],
                     device : Optional[Device],
                     pin_memory : Optional[bool]) -> Tensor

torch.empty_permuted(size : List[int],
                     physical_layout : List[int],
                     out : Tensor) -> Tensor

torch.empty_quantized(size : List[int],
                      qtensor : Tensor,
                      dtype : Optional[int],
                      layout : Optional[int],
                      device : Optional[Device],
                      pin_memory : Optional[bool],
                      memory_format : Optional[int]) -> Tensor

torch.empty_quantized(size : List[int],
                      qtensor : Tensor,
                      memory_format : Optional[int],
                      out : Tensor) -> Tensor

torch.empty_strided(size : List[int],
                    stride : List[int],
                    dtype : Optional[int],
                    layout : Optional[int],
                    device : Optional[Device],
                    pin_memory : Optional[bool]) -> Tensor

torch.empty_strided(size : List[int],
                    stride : List[int],
                    out : Tensor) -> Tensor

torch.eq(self : Tensor,
         other : Tensor) -> Tensor

torch.eq(self : Tensor,
         other : number) -> Tensor

torch.eq(self : Tensor,
         other : number,
         out : Tensor) -> Tensor

torch.eq(self : Tensor,
         other : Tensor,
         out : Tensor) -> Tensor

torch.eq(a : List[int],
         b : List[int]) -> bool

torch.eq(a : Device,
         b : Device) -> bool

torch.eq(a : bool,
         b : bool) -> bool

torch.eq(a : AnyEnumType,
         b : AnyEnumType) -> bool

torch.eq(a : int,
         b : int) -> bool

torch.eq(a : complex,
         b : complex) -> bool

torch.eq(a : float,
         b : float) -> bool

torch.eq(a : int,
         b : float) -> bool

torch.eq(a : float,
         b : int) -> bool

torch.eq(a : float,
         b : complex) -> bool

torch.eq(a : complex,
         b : float) -> bool

torch.eq(a : number,
         b : number) -> bool

torch.eq(a : str,
         b : str) -> bool

torch.eq(a : List[float],
         b : List[float]) -> bool

torch.eq(a : List[Tensor],
         b : List[Tensor]) -> bool

torch.eq(a : List[bool],
         b : List[bool]) -> bool

torch.eq(a : List[str],
         b : List[str]) -> bool

torch.equal(self : Tensor,
            other : Tensor) -> bool

torch.erf(self : Tensor) -> Tensor

torch.erf(self : Tensor,
          out : Tensor) -> Tensor

torch.erf(a : int) -> float

torch.erf(a : float) -> float

torch.erf(a : number) -> number

torch.erf_(self : Tensor) -> Tensor

torch.erfc(self : Tensor) -> Tensor

torch.erfc(self : Tensor,
           out : Tensor) -> Tensor

torch.erfc(a : int) -> float

torch.erfc(a : float) -> float

torch.erfc(a : number) -> number

torch.erfc_(self : Tensor) -> Tensor

torch.erfinv(self : Tensor) -> Tensor

torch.erfinv(self : Tensor,
             out : Tensor) -> Tensor

torch.exp(self : Tensor) -> Tensor

torch.exp(self : Tensor,
          out : Tensor) -> Tensor

torch.exp(a : int) -> float

torch.exp(a : float) -> float

torch.exp(a : complex) -> complex

torch.exp(a : number) -> number

torch.exp2(self : Tensor) -> Tensor

torch.exp2(self : Tensor,
           out : Tensor) -> Tensor

torch.exp2_(self : Tensor) -> Tensor

torch.exp_(self : Tensor) -> Tensor

torch.expand_copy(self : Tensor,
                  size : List[int],
                  implicit : bool=False) -> Tensor

torch.expand_copy(self : Tensor,
                  size : List[int],
                  implicit : bool=False,
                  out : Tensor) -> Tensor

torch.expm1(self : Tensor) -> Tensor

torch.expm1(self : Tensor,
            out : Tensor) -> Tensor

torch.expm1(a : int) -> float

torch.expm1(a : float) -> float

torch.expm1(a : number) -> number

torch.expm1_(self : Tensor) -> Tensor

torch.eye(n : int,
          dtype : Optional[int],
          layout : Optional[int],
          device : Optional[Device],
          pin_memory : Optional[bool]) -> Tensor

torch.eye(n : int,
          m : int,
          dtype : Optional[int],
          layout : Optional[int],
          device : Optional[Device],
          pin_memory : Optional[bool]) -> Tensor

torch.eye(n : int,
          out : Tensor) -> Tensor

torch.eye(n : int,
          m : int,
          out : Tensor) -> Tensor

torch.fake_quantize_per_channel_affine(self : Tensor,
                                       scale : Tensor,
                                       zero_point : Tensor,
                                       axis : int,
                                       quant_min : int,
                                       quant_max : int) -> Tensor

torch.fake_quantize_per_tensor_affine(self : Tensor,
                                      scale : float,
                                      zero_point : int,
                                      quant_min : int,
                                      quant_max : int) -> Tensor

torch.fake_quantize_per_tensor_affine(self : Tensor,
                                      scale : Tensor,
                                      zero_point : Tensor,
                                      quant_min : int,
                                      quant_max : int) -> Tensor

torch.fbgemm_linear_fp16_weight(input : Tensor,
                                packed_weight : Tensor,
                                bias : Tensor) -> Tensor

torch.fbgemm_linear_fp16_weight_fp32_activation(input : Tensor,
                                                packed_weight : Tensor,
                                                bias : Tensor) -> Tensor

torch.fbgemm_linear_int8_weight(input : Tensor,
                                weight : Tensor,
                                packed : Tensor,
                                col_offsets : Tensor,
                                weight_scale : number,
                                weight_zero_point : number,
                                bias : Tensor) -> Tensor

torch.fbgemm_linear_int8_weight_fp32_activation(input : Tensor,
                                                weight : Tensor,
                                                packed : Tensor,
                                                col_offsets : Tensor,
                                                weight_scale : number,
                                                weight_zero_point : number,
                                                bias : Tensor) -> Tensor

torch.fbgemm_linear_quantize_weight(input : Tensor) -> Tuple[Tensor, Tensor, float, int]

torch.fbgemm_pack_gemm_matrix_fp16(input : Tensor) -> Tensor

torch.fbgemm_pack_quantized_matrix(input : Tensor) -> Tensor

torch.fbgemm_pack_quantized_matrix(input : Tensor,
                                   K : int,
                                   N : int) -> Tensor

torch.feature_alpha_dropout(input : Tensor,
                            p : float,
                            train : bool) -> Tensor

torch.feature_alpha_dropout_(self : Tensor,
                             p : float,
                             train : bool) -> Tensor

torch.feature_dropout(input : Tensor,
                      p : float,
                      train : bool) -> Tensor

torch.feature_dropout_(self : Tensor,
                       p : float,
                       train : bool) -> Tensor

torch.fill(self : Tensor,
           value : number) -> Tensor

torch.fill(self : Tensor,
           value : number,
           out : Tensor) -> Tensor

torch.fill(self : Tensor,
           value : Tensor) -> Tensor

torch.fill(self : Tensor,
           value : Tensor,
           out : Tensor) -> Tensor

torch.fill_(self : Tensor,
            value : number) -> Tensor

torch.fill_(self : Tensor,
            value : Tensor) -> Tensor

torch.fix(self : Tensor) -> Tensor

torch.fix(self : Tensor,
          out : Tensor) -> Tensor

torch.fix_(self : Tensor) -> Tensor

torch.flatten(self : Tensor,
              start_dim : int=0,
              end_dim : int=-1) -> Tensor

torch.flatten(self : Tensor,
              dims : List[str],
              out_dim : str) -> Tensor

torch.flatten(self : Tensor,
              start_dim : int,
              end_dim : int,
              out_dim : str) -> Tensor

torch.flatten(self : Tensor,
              start_dim : str,
              end_dim : str,
              out_dim : str) -> Tensor

torch.flip(self : Tensor,
           dims : List[int]) -> Tensor

torch.flip(self : Tensor,
           dims : List[int],
           out : Tensor) -> Tensor

torch.fliplr(self : Tensor) -> Tensor

torch.flipud(self : Tensor) -> Tensor

torch.float_power(self : Tensor,
                  exponent : Tensor) -> Tensor

torch.float_power(self : Tensor,
                  exponent : number) -> Tensor

torch.float_power(self : number,
                  exponent : Tensor) -> Tensor

torch.float_power(self : Tensor,
                  exponent : Tensor,
                  out : Tensor) -> Tensor

torch.float_power(self : number,
                  exponent : Tensor,
                  out : Tensor) -> Tensor

torch.float_power(self : Tensor,
                  exponent : number,
                  out : Tensor) -> Tensor

torch.floor(self : Tensor) -> Tensor

torch.floor(self : Tensor,
            out : Tensor) -> Tensor

torch.floor(a : int) -> int

torch.floor(a : float) -> int

torch.floor(a : number) -> number

torch.floor_(self : Tensor) -> Tensor

torch.floor_divide(self : Tensor,
                   other : Tensor) -> Tensor

torch.floor_divide(self : Tensor,
                   other : number) -> Tensor

torch.floor_divide(self : Tensor,
                   other : Tensor,
                   out : Tensor) -> Tensor

torch.floor_divide(self : Tensor,
                   other : number,
                   out : Tensor) -> Tensor

torch.fmax(self : Tensor,
           other : Tensor) -> Tensor

torch.fmax(self : Tensor,
           other : Tensor,
           out : Tensor) -> Tensor

torch.fmin(self : Tensor,
           other : Tensor) -> Tensor

torch.fmin(self : Tensor,
           other : Tensor,
           out : Tensor) -> Tensor

torch.fmod(self : Tensor,
           other : Tensor) -> Tensor

torch.fmod(self : Tensor,
           other : number) -> Tensor

torch.fmod(self : Tensor,
           other : Tensor,
           out : Tensor) -> Tensor

torch.fmod(self : Tensor,
           other : number,
           out : Tensor) -> Tensor

torch.fmod(a : int,
           b : int) -> float

torch.fmod(a : float,
           b : float) -> float

torch.fmod(a : int,
           b : float) -> float

torch.fmod(a : float,
           b : int) -> float

torch.fmod(a : number,
           b : number) -> float

torch.frac(self : Tensor) -> Tensor

torch.frac(self : Tensor,
           out : Tensor) -> Tensor

torch.frac_(self : Tensor) -> Tensor

torch.frexp(self : Tensor) -> Tuple[Tensor, Tensor]

torch.frexp(self : Tensor,
            mantissa : Tensor,
            exponent : Tensor) -> Tuple[Tensor, Tensor]

torch.frexp(a : float) -> Tuple[float, int]

torch.frobenius_norm(self : Tensor,
                     dim : List[int],
                     keepdim : bool=False) -> Tensor

torch.frobenius_norm(self : Tensor,
                     dim : List[int],
                     keepdim : bool=False,
                     out : Tensor) -> Tensor

torch.from_file(filename : str,
                shared : Optional[bool],
                size : Optional[int]=0,
                dtype : Optional[int],
                layout : Optional[int],
                device : Optional[Device],
                pin_memory : Optional[bool]) -> Tensor

torch.from_file(filename : str,
                shared : Optional[bool],
                size : Optional[int]=0,
                out : Tensor) -> Tensor

torch.full(size : List[int],
           fill_value : number,
           names : Optional[List[str]],
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.full(size : List[int],
           fill_value : number,
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.full(size : List[int],
           fill_value : number,
           names : Optional[List[str]],
           out : Tensor) -> Tensor

torch.full(size : List[int],
           fill_value : number,
           out : Tensor) -> Tensor

torch.full_like(self : Tensor,
                fill_value : number,
                dtype : Optional[int],
                layout : Optional[int],
                device : Optional[Device],
                pin_memory : Optional[bool],
                memory_format : Optional[int]) -> Tensor

torch.full_like(self : Tensor,
                fill_value : number,
                memory_format : Optional[int],
                out : Tensor) -> Tensor

torch.fused_moving_avg_obs_fake_quant(self : Tensor,
                                      observer_on : Tensor,
                                      fake_quant_on : Tensor,
                                      running_min : Tensor,
                                      running_max : Tensor,
                                      scale : Tensor,
                                      zero_point : Tensor,
                                      averaging_const : float,
                                      quant_min : int,
                                      quant_max : int,
                                      ch_axis : int,
                                      per_row_fake_quant : bool=False,
                                      symmetric_quant : bool=False) -> Tensor

torch.gather(self : Tensor,
             dim : int,
             index : Tensor,
             sparse_grad : bool=False) -> Tensor

torch.gather(self : Tensor,
             dim : int,
             index : Tensor,
             sparse_grad : bool=False,
             out : Tensor) -> Tensor

torch.gather(self : Tensor,
             dim : str,
             index : Tensor,
             sparse_grad : bool=False) -> Tensor

torch.gather(self : Tensor,
             dim : str,
             index : Tensor,
             sparse_grad : bool=False,
             out : Tensor) -> Tensor

torch.gcd(self : Tensor,
          other : Tensor) -> Tensor

torch.gcd(self : Tensor,
          other : Tensor,
          out : Tensor) -> Tensor

torch.gcd(a : int,
          b : int) -> int

torch.gcd_(self : Tensor,
           other : Tensor) -> Tensor

torch.ge(self : Tensor,
         other : Tensor) -> Tensor

torch.ge(self : Tensor,
         other : number) -> Tensor

torch.ge(self : Tensor,
         other : number,
         out : Tensor) -> Tensor

torch.ge(self : Tensor,
         other : Tensor,
         out : Tensor) -> Tensor

torch.ge(a : int,
         b : int) -> bool

torch.ge(a : float,
         b : float) -> bool

torch.ge(a : int,
         b : float) -> bool

torch.ge(a : float,
         b : int) -> bool

torch.ge(a : number,
         b : number) -> bool

torch.ge(a : str,
         b : str) -> bool

torch.geqrf(self : Tensor) -> Tuple[Tensor, Tensor]

torch.geqrf(self : Tensor,
            a : Tensor,
            tau : Tensor) -> Tuple[Tensor, Tensor]

torch.ger(self : Tensor,
          vec2 : Tensor) -> Tensor

torch.ger(self : Tensor,
          vec2 : Tensor,
          out : Tensor) -> Tensor

torch.get_autocast_dtype(device_type : str) -> int

torch.get_device(self : Tensor) -> int

torch.gradient(self : Tensor,
               spacing : Optional[number],
               dim : Optional[int],
               edge_order : int=1) -> List[Tensor]

torch.gradient(self : Tensor,
               spacing : number,
               dim : List[int],
               edge_order : int=1) -> List[Tensor]

torch.gradient(self : Tensor,
               dim : List[int],
               edge_order : int=1) -> List[Tensor]

torch.gradient(self : Tensor,
               spacing : List[number],
               dim : Optional[int],
               edge_order : int=1) -> List[Tensor]

torch.gradient(self : Tensor,
               spacing : List[number],
               dim : List[int],
               edge_order : int=1) -> List[Tensor]

torch.gradient(self : Tensor,
               spacing : List[Tensor],
               dim : Optional[int],
               edge_order : int=1) -> List[Tensor]

torch.gradient(self : Tensor,
               spacing : List[Tensor],
               dim : List[int],
               edge_order : int=1) -> List[Tensor]

torch.greater(self : Tensor,
              other : Tensor) -> Tensor

torch.greater(self : Tensor,
              other : number) -> Tensor

torch.greater(self : Tensor,
              other : number,
              out : Tensor) -> Tensor

torch.greater(self : Tensor,
              other : Tensor,
              out : Tensor) -> Tensor

torch.greater_equal(self : Tensor,
                    other : Tensor) -> Tensor

torch.greater_equal(self : Tensor,
                    other : number) -> Tensor

torch.greater_equal(self : Tensor,
                    other : number,
                    out : Tensor) -> Tensor

torch.greater_equal(self : Tensor,
                    other : Tensor,
                    out : Tensor) -> Tensor

torch.grid_sampler(input : Tensor,
                   grid : Tensor,
                   interpolation_mode : int,
                   padding_mode : int,
                   align_corners : bool) -> Tensor

torch.grid_sampler_2d(input : Tensor,
                      grid : Tensor,
                      interpolation_mode : int,
                      padding_mode : int,
                      align_corners : bool) -> Tensor

torch.grid_sampler_2d(input : Tensor,
                      grid : Tensor,
                      interpolation_mode : int,
                      padding_mode : int,
                      align_corners : bool,
                      out : Tensor) -> Tensor

torch.grid_sampler_3d(input : Tensor,
                      grid : Tensor,
                      interpolation_mode : int,
                      padding_mode : int,
                      align_corners : bool) -> Tensor

torch.grid_sampler_3d(input : Tensor,
                      grid : Tensor,
                      interpolation_mode : int,
                      padding_mode : int,
                      align_corners : bool,
                      out : Tensor) -> Tensor

torch.group_norm(input : Tensor,
                 num_groups : int,
                 weight : Optional[Tensor],
                 bias : Optional[Tensor],
                 eps : float=1e-05,
                 cudnn_enabled : bool=True) -> Tensor

torch.gru(input : Tensor,
          hx : Tensor,
          params : List[Tensor],
          has_biases : bool,
          num_layers : int,
          dropout : float,
          train : bool,
          bidirectional : bool,
          batch_first : bool) -> Tuple[Tensor, Tensor]

torch.gru(data : Tensor,
          batch_sizes : Tensor,
          hx : Tensor,
          params : List[Tensor],
          has_biases : bool,
          num_layers : int,
          dropout : float,
          train : bool,
          bidirectional : bool) -> Tuple[Tensor, Tensor]

torch.gru_cell(input : Tensor,
               hx : Tensor,
               w_ih : Tensor,
               w_hh : Tensor,
               b_ih : Optional[Tensor],
               b_hh : Optional[Tensor]) -> Tensor

torch.gt(self : Tensor,
         other : Tensor) -> Tensor

torch.gt(self : Tensor,
         other : number) -> Tensor

torch.gt(self : Tensor,
         other : number,
         out : Tensor) -> Tensor

torch.gt(self : Tensor,
         other : Tensor,
         out : Tensor) -> Tensor

torch.gt(a : int,
         b : int) -> bool

torch.gt(a : float,
         b : float) -> bool

torch.gt(a : int,
         b : float) -> bool

torch.gt(a : float,
         b : int) -> bool

torch.gt(a : number,
         b : number) -> bool

torch.gt(a : str,
         b : str) -> bool

torch.hamming_window(window_length : int,
                     dtype : Optional[int],
                     layout : Optional[int],
                     device : Optional[Device],
                     pin_memory : Optional[bool]) -> Tensor

torch.hamming_window(window_length : int,
                     periodic : bool,
                     dtype : Optional[int],
                     layout : Optional[int],
                     device : Optional[Device],
                     pin_memory : Optional[bool]) -> Tensor

torch.hamming_window(window_length : int,
                     periodic : bool,
                     alpha : float,
                     dtype : Optional[int],
                     layout : Optional[int],
                     device : Optional[Device],
                     pin_memory : Optional[bool]) -> Tensor

torch.hamming_window(window_length : int,
                     periodic : bool,
                     alpha : float,
                     beta : float,
                     dtype : Optional[int],
                     layout : Optional[int],
                     device : Optional[Device],
                     pin_memory : Optional[bool]) -> Tensor

torch.hamming_window(window_length : int,
                     out : Tensor) -> Tensor

torch.hamming_window(window_length : int,
                     periodic : bool,
                     out : Tensor) -> Tensor

torch.hamming_window(window_length : int,
                     periodic : bool,
                     alpha : float,
                     out : Tensor) -> Tensor

torch.hamming_window(window_length : int,
                     periodic : bool,
                     alpha : float,
                     beta : float,
                     out : Tensor) -> Tensor

torch.hann_window(window_length : int,
                  dtype : Optional[int],
                  layout : Optional[int],
                  device : Optional[Device],
                  pin_memory : Optional[bool]) -> Tensor

torch.hann_window(window_length : int,
                  periodic : bool,
                  dtype : Optional[int],
                  layout : Optional[int],
                  device : Optional[Device],
                  pin_memory : Optional[bool]) -> Tensor

torch.hann_window(window_length : int,
                  out : Tensor) -> Tensor

torch.hann_window(window_length : int,
                  periodic : bool,
                  out : Tensor) -> Tensor

torch.hardshrink(self : Tensor,
                 lambd : number=0.5) -> Tensor

torch.hardshrink(self : Tensor,
                 lambd : number=0.5,
                 out : Tensor) -> Tensor

torch.heaviside(self : Tensor,
                values : Tensor) -> Tensor

torch.heaviside(self : Tensor,
                values : Tensor,
                out : Tensor) -> Tensor

torch.hinge_embedding_loss(self : Tensor,
                           target : Tensor,
                           margin : float=1.0,
                           reduction : int=1) -> Tensor

torch.histc(self : Tensor,
            bins : int=100,
            min : number=0,
            max : number=0) -> Tensor

torch.histc(self : Tensor,
            bins : int=100,
            min : number=0,
            max : number=0,
            out : Tensor) -> Tensor

torch.histogram(self : Tensor,
                bins : Tensor,
                weight : Optional[Tensor],
                density : bool=False) -> Tuple[Tensor, Tensor]

torch.histogram(self : Tensor,
                bins : Tensor,
                weight : Optional[Tensor],
                density : bool=False,
                hist : Tensor,
                bin_edges : Tensor) -> Tuple[Tensor, Tensor]

torch.histogram(self : Tensor,
                bins : int=100,
                range : Optional[List[float]],
                weight : Optional[Tensor],
                density : bool=False) -> Tuple[Tensor, Tensor]

torch.histogram(self : Tensor,
                bins : int=100,
                range : Optional[List[float]],
                weight : Optional[Tensor],
                density : bool=False,
                hist : Tensor,
                bin_edges : Tensor) -> Tuple[Tensor, Tensor]

torch.histogramdd(self : Tensor,
                  bins : List[int],
                  range : Optional[List[float]],
                  weight : Optional[Tensor],
                  density : bool=False) -> Tuple[Tensor, List[Tensor]]

torch.histogramdd(self : Tensor,
                  bins : int,
                  range : Optional[List[float]],
                  weight : Optional[Tensor],
                  density : bool=False) -> Tuple[Tensor, List[Tensor]]

torch.histogramdd(self : Tensor,
                  bins : List[Tensor],
                  range : Optional[List[float]],
                  weight : Optional[Tensor],
                  density : bool=False) -> Tuple[Tensor, List[Tensor]]

torch.hsplit(self : Tensor,
             sections : int) -> List[Tensor]

torch.hsplit(self : Tensor,
             indices : List[int]) -> List[Tensor]

torch.hspmm(mat1 : Tensor,
            mat2 : Tensor,
            out : Tensor) -> Tensor

torch.hspmm(mat1 : Tensor,
            mat2 : Tensor) -> Tensor

torch.hstack(tensors : List[Tensor]) -> Tensor

torch.hstack(tensors : List[Tensor],
             out : Tensor) -> Tensor

torch.hypot(self : Tensor,
            other : Tensor) -> Tensor

torch.hypot(self : Tensor,
            other : Tensor,
            out : Tensor) -> Tensor

torch.i0(self : Tensor) -> Tensor

torch.i0(self : Tensor,
         out : Tensor) -> Tensor

torch.i0_(self : Tensor) -> Tensor

torch.igamma(self : Tensor,
             other : Tensor) -> Tensor

torch.igamma(self : Tensor,
             other : Tensor,
             out : Tensor) -> Tensor

torch.igammac(self : Tensor,
              other : Tensor) -> Tensor

torch.igammac(self : Tensor,
              other : Tensor,
              out : Tensor) -> Tensor

torch.imag(self : Tensor) -> Tensor

torch.index_add(self : Tensor,
                dim : int,
                index : Tensor,
                source : Tensor,
                alpha : number=1) -> Tensor

torch.index_add(self : Tensor,
                dim : int,
                index : Tensor,
                source : Tensor,
                alpha : number=1,
                out : Tensor) -> Tensor

torch.index_add(self : Tensor,
                dim : str,
                index : Tensor,
                source : Tensor,
                alpha : number=1) -> Tensor

torch.index_copy(self : Tensor,
                 dim : int,
                 index : Tensor,
                 source : Tensor) -> Tensor

torch.index_copy(self : Tensor,
                 dim : str,
                 index : Tensor,
                 source : Tensor) -> Tensor

torch.index_copy(self : Tensor,
                 dim : int,
                 index : Tensor,
                 source : Tensor,
                 out : Tensor) -> Tensor

torch.index_fill(self : Tensor,
                 dim : int,
                 index : Tensor,
                 value : Tensor) -> Tensor

torch.index_fill(self : Tensor,
                 dim : int,
                 index : Tensor,
                 value : number) -> Tensor

torch.index_fill(self : Tensor,
                 dim : str,
                 index : Tensor,
                 value : number) -> Tensor

torch.index_fill(self : Tensor,
                 dim : str,
                 index : Tensor,
                 value : Tensor) -> Tensor

torch.index_fill(self : Tensor,
                 dim : int,
                 index : Tensor,
                 value : number,
                 out : Tensor) -> Tensor

torch.index_fill(self : Tensor,
                 dim : int,
                 index : Tensor,
                 value : Tensor,
                 out : Tensor) -> Tensor

torch.index_put(self : Tensor,
                indices : List[Optional[Tensor]],
                values : Tensor,
                accumulate : bool=False) -> Tensor

torch.index_put(self : Tensor,
                indices : List[Optional[Tensor]],
                values : Tensor,
                accumulate : bool=False,
                out : Tensor) -> Tensor

torch.index_put(self : Tensor,
                indices : List[Tensor],
                values : Tensor,
                accumulate : bool=False) -> Tensor

torch.index_put_(self : Tensor,
                 indices : List[Optional[Tensor]],
                 values : Tensor,
                 accumulate : bool=False) -> Tensor

torch.index_put_(self : Tensor,
                 indices : List[Tensor],
                 values : Tensor,
                 accumulate : bool=False) -> Tensor

torch.index_reduce(self : Tensor,
                   dim : int,
                   index : Tensor,
                   source : Tensor,
                   reduce : str,
                   include_self : bool=True) -> Tensor

torch.index_reduce(self : Tensor,
                   dim : int,
                   index : Tensor,
                   source : Tensor,
                   reduce : str,
                   include_self : bool=True,
                   out : Tensor) -> Tensor

torch.index_select(self : Tensor,
                   dim : int,
                   index : Tensor) -> Tensor

torch.index_select(self : Tensor,
                   dim : int,
                   index : Tensor,
                   out : Tensor) -> Tensor

torch.index_select(self : Tensor,
                   dim : str,
                   index : Tensor) -> Tensor

torch.index_select(self : Tensor,
                   dim : str,
                   index : Tensor,
                   out : Tensor) -> Tensor

torch.indices_copy(self : Tensor) -> Tensor

torch.indices_copy(self : Tensor,
                   out : Tensor) -> Tensor

torch.initial_seed(self : Generator) -> int

torch.inner(self : Tensor,
            other : Tensor) -> Tensor

torch.inner(self : Tensor,
            other : Tensor,
            out : Tensor) -> Tensor

torch.instance_norm(input : Tensor,
                    weight : Optional[Tensor],
                    bias : Optional[Tensor],
                    running_mean : Optional[Tensor],
                    running_var : Optional[Tensor],
                    use_input_stats : bool,
                    momentum : float,
                    eps : float,
                    cudnn_enabled : bool) -> Tensor

torch.int_repr(self : Tensor,
               out : Tensor) -> Tensor

torch.int_repr(self : Tensor) -> Tensor

torch.inverse(self : Tensor) -> Tensor

torch.inverse(self : Tensor,
              out : Tensor) -> Tensor

torch.is_autocast_cpu_enabled() -> bool

torch.is_autocast_enabled() -> bool

torch.is_complex(self : Tensor) -> bool

torch.is_conj(self : Tensor) -> bool

torch.is_distributed(self : Tensor) -> bool

torch.is_floating_point(self : Tensor) -> bool

torch.is_grad_enabled() -> bool

torch.is_inference(self : Tensor) -> bool

torch.is_neg(self : Tensor) -> bool

torch.is_nonzero(self : Tensor) -> bool

torch.is_same_size(self : Tensor,
                   other : Tensor) -> bool

torch.is_signed(self : Tensor) -> bool

torch.is_vulkan_available() -> bool

torch.isclose(self : Tensor,
              other : Tensor,
              rtol : float=1e-05,
              atol : float=1e-08,
              equal_nan : bool=False) -> Tensor

torch.isfinite(self : Tensor) -> Tensor

torch.isfinite(a : float) -> bool

torch.isfinite(a : complex) -> bool

torch.isin(elements : Tensor,
           test_elements : Tensor,
           assume_unique : bool=False,
           invert : bool=False) -> Tensor

torch.isin(elements : Tensor,
           test_elements : Tensor,
           assume_unique : bool=False,
           invert : bool=False,
           out : Tensor) -> Tensor

torch.isin(elements : Tensor,
           test_element : number,
           assume_unique : bool=False,
           invert : bool=False) -> Tensor

torch.isin(elements : Tensor,
           test_element : number,
           assume_unique : bool=False,
           invert : bool=False,
           out : Tensor) -> Tensor

torch.isin(element : number,
           test_elements : Tensor,
           assume_unique : bool=False,
           invert : bool=False) -> Tensor

torch.isin(element : number,
           test_elements : Tensor,
           assume_unique : bool=False,
           invert : bool=False,
           out : Tensor) -> Tensor

torch.isinf(self : Tensor) -> Tensor

torch.isinf(self : Tensor,
            out : Tensor) -> Tensor

torch.isinf(a : float) -> bool

torch.isinf(a : complex) -> bool

torch.isnan(self : Tensor) -> Tensor

torch.isnan(self : Tensor,
            out : Tensor) -> Tensor

torch.isnan(a : float) -> bool

torch.isnan(a : complex) -> bool

torch.isneginf(self : Tensor) -> Tensor

torch.isneginf(self : Tensor,
               out : Tensor) -> Tensor

torch.isposinf(self : Tensor) -> Tensor

torch.isposinf(self : Tensor,
               out : Tensor) -> Tensor

torch.isreal(self : Tensor) -> Tensor

torch.istft(self : Tensor,
            n_fft : int,
            hop_length : Optional[int],
            win_length : Optional[int],
            window : Optional[Tensor],
            center : bool=True,
            normalized : bool=False,
            onesided : Optional[bool],
            length : Optional[int],
            return_complex : bool=False) -> Tensor

torch.kaiser_window(window_length : int,
                    dtype : Optional[int],
                    layout : Optional[int],
                    device : Optional[Device],
                    pin_memory : Optional[bool]) -> Tensor

torch.kaiser_window(window_length : int,
                    periodic : bool,
                    dtype : Optional[int],
                    layout : Optional[int],
                    device : Optional[Device],
                    pin_memory : Optional[bool]) -> Tensor

torch.kaiser_window(window_length : int,
                    periodic : bool,
                    beta : float,
                    dtype : Optional[int],
                    layout : Optional[int],
                    device : Optional[Device],
                    pin_memory : Optional[bool]) -> Tensor

torch.kaiser_window(window_length : int,
                    out : Tensor) -> Tensor

torch.kaiser_window(window_length : int,
                    periodic : bool,
                    out : Tensor) -> Tensor

torch.kaiser_window(window_length : int,
                    periodic : bool,
                    beta : float,
                    out : Tensor) -> Tensor

torch.kl_div(self : Tensor,
             target : Tensor,
             reduction : int=1,
             log_target : bool=False) -> Tensor

torch.kron(self : Tensor,
           other : Tensor) -> Tensor

torch.kron(self : Tensor,
           other : Tensor,
           out : Tensor) -> Tensor

torch.kthvalue(self : Tensor,
               k : int,
               dim : int=-1,
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.kthvalue(self : Tensor,
               k : int,
               dim : str,
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.kthvalue(self : Tensor,
               k : int,
               dim : str,
               keepdim : bool=False,
               values : Tensor,
               indices : Tensor) -> Tuple[Tensor, Tensor]

torch.kthvalue(self : Tensor,
               k : int,
               dim : int=-1,
               keepdim : bool=False,
               values : Tensor,
               indices : Tensor) -> Tuple[Tensor, Tensor]

torch.layer_norm(input : Tensor,
                 normalized_shape : List[int],
                 weight : Optional[Tensor],
                 bias : Optional[Tensor],
                 eps : float=1e-05,
                 cudnn_enable : bool=True) -> Tensor

torch.lcm(self : Tensor,
          other : Tensor) -> Tensor

torch.lcm(self : Tensor,
          other : Tensor,
          out : Tensor) -> Tensor

torch.lcm_(self : Tensor,
           other : Tensor) -> Tensor

torch.ldexp(self : Tensor,
            other : Tensor) -> Tensor

torch.ldexp(self : Tensor,
            other : Tensor,
            out : Tensor) -> Tensor

torch.ldexp(x : float,
            i : int) -> float

torch.ldexp_(self : Tensor,
             other : Tensor) -> Tensor

torch.le(self : Tensor,
         other : Tensor) -> Tensor

torch.le(self : Tensor,
         other : number) -> Tensor

torch.le(self : Tensor,
         other : number,
         out : Tensor) -> Tensor

torch.le(self : Tensor,
         other : Tensor,
         out : Tensor) -> Tensor

torch.le(a : int,
         b : int) -> bool

torch.le(a : float,
         b : float) -> bool

torch.le(a : int,
         b : float) -> bool

torch.le(a : float,
         b : int) -> bool

torch.le(a : number,
         b : number) -> bool

torch.le(a : str,
         b : str) -> bool

torch.lerp(self : Tensor,
           end : Tensor,
           weight : number) -> Tensor

torch.lerp(self : Tensor,
           end : Tensor,
           weight : Tensor) -> Tensor

torch.lerp(self : Tensor,
           end : Tensor,
           weight : number,
           out : Tensor) -> Tensor

torch.lerp(self : Tensor,
           end : Tensor,
           weight : Tensor,
           out : Tensor) -> Tensor

torch.less(self : Tensor,
           other : Tensor) -> Tensor

torch.less(self : Tensor,
           other : number) -> Tensor

torch.less(self : Tensor,
           other : number,
           out : Tensor) -> Tensor

torch.less(self : Tensor,
           other : Tensor,
           out : Tensor) -> Tensor

torch.less_equal(self : Tensor,
                 other : Tensor) -> Tensor

torch.less_equal(self : Tensor,
                 other : number) -> Tensor

torch.less_equal(self : Tensor,
                 other : number,
                 out : Tensor) -> Tensor

torch.less_equal(self : Tensor,
                 other : Tensor,
                 out : Tensor) -> Tensor

torch.lgamma(self : Tensor) -> Tensor

torch.lgamma(self : Tensor,
             out : Tensor) -> Tensor

torch.lgamma(a : int) -> float

torch.lgamma(a : float) -> float

torch.lgamma(a : number) -> number

torch.linspace(start : Tensor,
               end : Tensor,
               steps : int,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.linspace(start : Tensor,
               end : number,
               steps : int,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.linspace(start : number,
               end : Tensor,
               steps : int,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.linspace(start : number,
               end : number,
               steps : int,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.linspace(start : number,
               end : number,
               steps : int,
               out : Tensor) -> Tensor

torch.linspace(start : Tensor,
               end : Tensor,
               steps : int,
               out : Tensor) -> Tensor

torch.linspace(start : Tensor,
               end : number,
               steps : int,
               out : Tensor) -> Tensor

torch.linspace(start : number,
               end : Tensor,
               steps : int,
               out : Tensor) -> Tensor

torch.log(self : Tensor) -> Tensor

torch.log(self : Tensor,
          out : Tensor) -> Tensor

torch.log(a : int) -> float

torch.log(a : float) -> float

torch.log(a : complex) -> complex

torch.log(a : number) -> number

torch.log(a : int,
          b : int) -> float

torch.log(a : float,
          b : float) -> float

torch.log(a : complex,
          b : complex) -> complex

torch.log(a : int,
          b : float) -> float

torch.log(a : float,
          b : int) -> float

torch.log(a : int,
          b : complex) -> complex

torch.log(a : complex,
          b : int) -> complex

torch.log(a : float,
          b : complex) -> complex

torch.log(a : complex,
          b : float) -> complex

torch.log(a : number,
          b : number) -> float

torch.log10(self : Tensor) -> Tensor

torch.log10(self : Tensor,
            out : Tensor) -> Tensor

torch.log10(a : int) -> float

torch.log10(a : float) -> float

torch.log10(a : complex) -> complex

torch.log10(a : number) -> number

torch.log10_(self : Tensor) -> Tensor

torch.log1p(self : Tensor) -> Tensor

torch.log1p(self : Tensor,
            out : Tensor) -> Tensor

torch.log1p(a : int) -> float

torch.log1p(a : float) -> float

torch.log1p(a : number) -> number

torch.log1p_(self : Tensor) -> Tensor

torch.log2(self : Tensor) -> Tensor

torch.log2(self : Tensor,
           out : Tensor) -> Tensor

torch.log2_(self : Tensor) -> Tensor

torch.log_(self : Tensor) -> Tensor

torch.log_softmax(self : Tensor,
                  dim : int,
                  dtype : Optional[int]) -> Tensor

torch.log_softmax(self : Tensor,
                  dim : str,
                  dtype : Optional[int]) -> Tensor

torch.log_softmax(self : Tensor,
                  dim : int,
                  dtype : Optional[int],
                  out : Tensor) -> Tensor

torch.logaddexp(self : Tensor,
                other : Tensor) -> Tensor

torch.logaddexp(self : Tensor,
                other : Tensor,
                out : Tensor) -> Tensor

torch.logaddexp2(self : Tensor,
                 other : Tensor) -> Tensor

torch.logaddexp2(self : Tensor,
                 other : Tensor,
                 out : Tensor) -> Tensor

torch.logcumsumexp(self : Tensor,
                   dim : int) -> Tensor

torch.logcumsumexp(self : Tensor,
                   dim : str) -> Tensor

torch.logcumsumexp(self : Tensor,
                   dim : str,
                   out : Tensor) -> Tensor

torch.logcumsumexp(self : Tensor,
                   dim : int,
                   out : Tensor) -> Tensor

torch.logdet(self : Tensor) -> Tensor

torch.logical_and(self : Tensor,
                  other : Tensor) -> Tensor

torch.logical_and(self : Tensor,
                  other : Tensor,
                  out : Tensor) -> Tensor

torch.logical_not(self : Tensor) -> Tensor

torch.logical_not(self : Tensor,
                  out : Tensor) -> Tensor

torch.logical_or(self : Tensor,
                 other : Tensor) -> Tensor

torch.logical_or(self : Tensor,
                 other : Tensor,
                 out : Tensor) -> Tensor

torch.logical_xor(self : Tensor,
                  other : Tensor) -> Tensor

torch.logical_xor(self : Tensor,
                  other : Tensor,
                  out : Tensor) -> Tensor

torch.logit(self : Tensor,
            eps : Optional[float]) -> Tensor

torch.logit(self : Tensor,
            eps : Optional[float],
            out : Tensor) -> Tensor

torch.logit_(self : Tensor,
             eps : Optional[float]) -> Tensor

torch.logspace(start : Tensor,
               end : Tensor,
               steps : int,
               base : float=10.0,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.logspace(start : Tensor,
               end : number,
               steps : int,
               base : float=10.0,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.logspace(start : number,
               end : Tensor,
               steps : int,
               base : float=10.0,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.logspace(start : number,
               end : number,
               steps : int,
               base : float=10.0,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.logspace(start : number,
               end : number,
               steps : int,
               base : float=10.0,
               out : Tensor) -> Tensor

torch.logspace(start : Tensor,
               end : Tensor,
               steps : int,
               base : float=10.0,
               out : Tensor) -> Tensor

torch.logspace(start : Tensor,
               end : number,
               steps : int,
               base : float=10.0,
               out : Tensor) -> Tensor

torch.logspace(start : number,
               end : Tensor,
               steps : int,
               base : float=10.0,
               out : Tensor) -> Tensor

torch.logsumexp(self : Tensor,
                dim : List[int],
                keepdim : bool=False) -> Tensor

torch.logsumexp(self : Tensor,
                dim : List[str],
                keepdim : bool=False) -> Tensor

torch.logsumexp(self : Tensor,
                dim : List[str],
                keepdim : bool=False,
                out : Tensor) -> Tensor

torch.logsumexp(self : Tensor,
                dim : List[int],
                keepdim : bool=False,
                out : Tensor) -> Tensor

torch.lstm(input : Tensor,
           hx : List[Tensor],
           params : List[Tensor],
           has_biases : bool,
           num_layers : int,
           dropout : float,
           train : bool,
           bidirectional : bool,
           batch_first : bool) -> Tuple[Tensor, Tensor, Tensor]

torch.lstm(data : Tensor,
           batch_sizes : Tensor,
           hx : List[Tensor],
           params : List[Tensor],
           has_biases : bool,
           num_layers : int,
           dropout : float,
           train : bool,
           bidirectional : bool) -> Tuple[Tensor, Tensor, Tensor]

torch.lstm_cell(input : Tensor,
                hx : List[Tensor],
                w_ih : Tensor,
                w_hh : Tensor,
                b_ih : Optional[Tensor],
                b_hh : Optional[Tensor]) -> Tuple[Tensor, Tensor]

torch.lt(self : Tensor,
         other : Tensor) -> Tensor

torch.lt(self : Tensor,
         other : number) -> Tensor

torch.lt(self : Tensor,
         other : number,
         out : Tensor) -> Tensor

torch.lt(self : Tensor,
         other : Tensor,
         out : Tensor) -> Tensor

torch.lt(a : int,
         b : int) -> bool

torch.lt(a : float,
         b : float) -> bool

torch.lt(a : int,
         b : float) -> bool

torch.lt(a : float,
         b : int) -> bool

torch.lt(a : number,
         b : number) -> bool

torch.lt(a : str,
         b : str) -> bool

torch.lu_solve(self : Tensor,
               LU_data : Tensor,
               LU_pivots : Tensor) -> Tensor

torch.lu_solve(self : Tensor,
               LU_data : Tensor,
               LU_pivots : Tensor,
               out : Tensor) -> Tensor

torch.lu_unpack(LU_data : Tensor,
                LU_pivots : Tensor,
                unpack_data : bool=True,
                unpack_pivots : bool=True) -> Tuple[Tensor, Tensor, Tensor]

torch.lu_unpack(LU_data : Tensor,
                LU_pivots : Tensor,
                unpack_data : bool=True,
                unpack_pivots : bool=True,
                P : Tensor,
                L : Tensor,
                U : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch.manual_seed(seed : int) -> Tuple[]

torch.manual_seed(self : Generator,
                  seed : int) -> Generator

torch.margin_ranking_loss(input1 : Tensor,
                          input2 : Tensor,
                          target : Tensor,
                          margin : float=0.0,
                          reduction : int=1) -> Tensor

torch.masked_fill(self : Tensor,
                  mask : Tensor,
                  value : number) -> Tensor

torch.masked_fill(self : Tensor,
                  mask : Tensor,
                  value : Tensor) -> Tensor

torch.masked_fill(self : Tensor,
                  mask : Tensor,
                  value : number,
                  out : Tensor) -> Tensor

torch.masked_fill(self : Tensor,
                  mask : Tensor,
                  value : Tensor,
                  out : Tensor) -> Tensor

torch.masked_scatter(self : Tensor,
                     mask : Tensor,
                     source : Tensor) -> Tensor

torch.masked_scatter(self : Tensor,
                     mask : Tensor,
                     source : Tensor,
                     out : Tensor) -> Tensor

torch.masked_select(self : Tensor,
                    mask : Tensor) -> Tensor

torch.masked_select(self : Tensor,
                    mask : Tensor,
                    out : Tensor) -> Tensor

torch.matmul(self : Tensor,
             other : Tensor) -> Tensor

torch.matmul(self : Tensor,
             other : Tensor,
             out : Tensor) -> Tensor

torch.matrix_exp(self : Tensor) -> Tensor

torch.matrix_power(self : Tensor,
                   n : int) -> Tensor

torch.matrix_power(self : Tensor,
                   n : int,
                   out : Tensor) -> Tensor

torch.max(self : Tensor,
          other : Tensor) -> Tensor

torch.max(self : Tensor) -> Tensor

torch.max(self : Tensor,
          dim : int,
          keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.max(self : Tensor,
          dim : int,
          keepdim : bool=False,
          max : Tensor,
          max_values : Tensor) -> Tuple[Tensor, Tensor]

torch.max(self : Tensor,
          dim : str,
          keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.max(self : Tensor,
          dim : str,
          keepdim : bool=False,
          max : Tensor,
          max_values : Tensor) -> Tuple[Tensor, Tensor]

torch.max(self : Tensor,
          out : Tensor) -> Tensor

torch.max(self : Tensor,
          other : Tensor,
          out : Tensor) -> Tensor

torch.max_pool1d(self : Tensor,
                 kernel_size : List[int],
                 stride : List[int]=[],
                 padding : List[int]=[0],
                 dilation : List[int]=[1],
                 ceil_mode : bool=False) -> Tensor

torch.max_pool1d_with_indices(self : Tensor,
                              kernel_size : List[int],
                              stride : List[int]=[],
                              padding : List[int]=[0],
                              dilation : List[int]=[1],
                              ceil_mode : bool=False) -> Tuple[Tensor, Tensor]

torch.max_pool2d(self : Tensor,
                 kernel_size : List[int],
                 stride : List[int]=[],
                 padding : List[int]=[0, 0],
                 dilation : List[int]=[1, 1],
                 ceil_mode : bool=False) -> Tensor

torch.max_pool3d(self : Tensor,
                 kernel_size : List[int],
                 stride : List[int]=[],
                 padding : List[int]=[0, 0, 0],
                 dilation : List[int]=[1, 1, 1],
                 ceil_mode : bool=False) -> Tensor

torch.maximum(self : Tensor,
              other : Tensor) -> Tensor

torch.maximum(self : Tensor,
              other : Tensor,
              out : Tensor) -> Tensor

torch.mean(self : Tensor,
           dtype : Optional[int]) -> Tensor

torch.mean(self : Tensor,
           dim : Optional[List[int]],
           keepdim : bool=False,
           dtype : Optional[int]) -> Tensor

torch.mean(self : Tensor,
           dim : List[str],
           keepdim : bool=False,
           dtype : Optional[int]) -> Tensor

torch.mean(self : Tensor,
           dim : List[str],
           keepdim : bool=False,
           dtype : Optional[int],
           out : Tensor) -> Tensor

torch.mean(self : Tensor,
           dim : Optional[List[int]],
           keepdim : bool=False,
           dtype : Optional[int],
           out : Tensor) -> Tensor

torch.mean(self : Tensor,
           dtype : Optional[int],
           out : Tensor) -> Tensor

torch.median(self : Tensor) -> Tensor

torch.median(self : Tensor,
             dim : int,
             keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.median(self : Tensor,
             dim : int,
             keepdim : bool=False,
             values : Tensor,
             indices : Tensor) -> Tuple[Tensor, Tensor]

torch.median(self : Tensor,
             dim : str,
             keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.median(self : Tensor,
             dim : str,
             keepdim : bool=False,
             values : Tensor,
             indices : Tensor) -> Tuple[Tensor, Tensor]

torch.median(self : Tensor,
             out : Tensor) -> Tensor

torch.meshgrid(tensors : List[Tensor]) -> List[Tensor]

torch.meshgrid(tensors : List[Tensor],
               indexing : str) -> List[Tensor]

torch.min(self : Tensor,
          other : Tensor) -> Tensor

torch.min(self : Tensor) -> Tensor

torch.min(self : Tensor,
          dim : int,
          keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.min(self : Tensor,
          dim : int,
          keepdim : bool=False,
          min : Tensor,
          min_indices : Tensor) -> Tuple[Tensor, Tensor]

torch.min(self : Tensor,
          dim : str,
          keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.min(self : Tensor,
          dim : str,
          keepdim : bool=False,
          min : Tensor,
          min_indices : Tensor) -> Tuple[Tensor, Tensor]

torch.min(self : Tensor,
          out : Tensor) -> Tensor

torch.min(self : Tensor,
          other : Tensor,
          out : Tensor) -> Tensor

torch.minimum(self : Tensor,
              other : Tensor) -> Tensor

torch.minimum(self : Tensor,
              other : Tensor,
              out : Tensor) -> Tensor

torch.miopen_batch_norm(input : Tensor,
                        weight : Tensor,
                        bias : Optional[Tensor],
                        running_mean : Optional[Tensor],
                        running_var : Optional[Tensor],
                        training : bool,
                        exponential_average_factor : float,
                        epsilon : float) -> Tuple[Tensor, Tensor, Tensor]

torch.miopen_batch_norm(input : Tensor,
                        weight : Tensor,
                        bias : Optional[Tensor],
                        running_mean : Optional[Tensor],
                        running_var : Optional[Tensor],
                        training : bool,
                        exponential_average_factor : float,
                        epsilon : float,
                        out0 : Tensor,
                        out1 : Tensor,
                        out2 : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch.miopen_convolution(self : Tensor,
                         weight : Tensor,
                         bias : Optional[Tensor],
                         padding : List[int],
                         stride : List[int],
                         dilation : List[int],
                         groups : int,
                         benchmark : bool,
                         deterministic : bool,
                         out : Tensor) -> Tensor

torch.miopen_convolution(self : Tensor,
                         weight : Tensor,
                         bias : Optional[Tensor],
                         padding : List[int],
                         stride : List[int],
                         dilation : List[int],
                         groups : int,
                         benchmark : bool,
                         deterministic : bool) -> Tensor

torch.miopen_convolution_add_relu(self : Tensor,
                                  weight : Tensor,
                                  z : Tensor,
                                  alpha : Optional[number],
                                  bias : Optional[Tensor],
                                  stride : List[int],
                                  padding : List[int],
                                  dilation : List[int],
                                  groups : int) -> Tensor

torch.miopen_convolution_relu(self : Tensor,
                              weight : Tensor,
                              bias : Optional[Tensor],
                              stride : List[int],
                              padding : List[int],
                              dilation : List[int],
                              groups : int) -> Tensor

torch.miopen_convolution_transpose(self : Tensor,
                                   weight : Tensor,
                                   bias : Optional[Tensor],
                                   padding : List[int],
                                   output_padding : List[int],
                                   stride : List[int],
                                   dilation : List[int],
                                   groups : int,
                                   benchmark : bool,
                                   deterministic : bool,
                                   out : Tensor) -> Tensor

torch.miopen_convolution_transpose(self : Tensor,
                                   weight : Tensor,
                                   bias : Optional[Tensor],
                                   padding : List[int],
                                   output_padding : List[int],
                                   stride : List[int],
                                   dilation : List[int],
                                   groups : int,
                                   benchmark : bool,
                                   deterministic : bool) -> Tensor

torch.miopen_depthwise_convolution(self : Tensor,
                                   weight : Tensor,
                                   bias : Optional[Tensor],
                                   padding : List[int],
                                   stride : List[int],
                                   dilation : List[int],
                                   groups : int,
                                   benchmark : bool,
                                   deterministic : bool,
                                   out : Tensor) -> Tensor

torch.miopen_depthwise_convolution(self : Tensor,
                                   weight : Tensor,
                                   bias : Optional[Tensor],
                                   padding : List[int],
                                   stride : List[int],
                                   dilation : List[int],
                                   groups : int,
                                   benchmark : bool,
                                   deterministic : bool) -> Tensor

torch.miopen_rnn(input : Tensor,
                 weight : List[Tensor],
                 weight_stride0 : int,
                 hx : Tensor,
                 cx : Optional[Tensor],
                 mode : int,
                 hidden_size : int,
                 num_layers : int,
                 batch_first : bool,
                 dropout : float,
                 train : bool,
                 bidirectional : bool,
                 batch_sizes : List[int],
                 dropout_state : Optional[Tensor],
                 out0 : Tensor,
                 out1 : Tensor,
                 out2 : Tensor,
                 out3 : Tensor,
                 out4 : Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]

torch.miopen_rnn(input : Tensor,
                 weight : List[Tensor],
                 weight_stride0 : int,
                 hx : Tensor,
                 cx : Optional[Tensor],
                 mode : int,
                 hidden_size : int,
                 num_layers : int,
                 batch_first : bool,
                 dropout : float,
                 train : bool,
                 bidirectional : bool,
                 batch_sizes : List[int],
                 dropout_state : Optional[Tensor]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]

torch.mkldnn_adaptive_avg_pool2d(self : Tensor,
                                 output_size : List[int],
                                 out : Tensor) -> Tensor

torch.mkldnn_adaptive_avg_pool2d(self : Tensor,
                                 output_size : List[int]) -> Tensor

torch.mkldnn_convolution(self : Tensor,
                         weight : Tensor,
                         bias : Optional[Tensor],
                         padding : List[int],
                         stride : List[int],
                         dilation : List[int],
                         groups : int) -> Tensor

torch.mkldnn_convolution(self : Tensor,
                         weight : Tensor,
                         bias : Optional[Tensor],
                         padding : List[int],
                         stride : List[int],
                         dilation : List[int],
                         groups : int,
                         out : Tensor) -> Tensor

torch.mkldnn_linear_backward_weights(grad_output : Tensor,
                                     input : Tensor,
                                     weight : Tensor,
                                     bias_defined : bool,
                                     out0 : Tensor,
                                     out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.mkldnn_linear_backward_weights(grad_output : Tensor,
                                     input : Tensor,
                                     weight : Tensor,
                                     bias_defined : bool) -> Tuple[Tensor, Tensor]

torch.mkldnn_max_pool2d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0],
                        dilation : List[int]=[1, 1],
                        ceil_mode : bool=False,
                        out : Tensor) -> Tensor

torch.mkldnn_max_pool2d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0],
                        dilation : List[int]=[1, 1],
                        ceil_mode : bool=False) -> Tensor

torch.mkldnn_max_pool3d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0, 0],
                        dilation : List[int]=[1, 1, 1],
                        ceil_mode : bool=False,
                        out : Tensor) -> Tensor

torch.mkldnn_max_pool3d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0, 0],
                        dilation : List[int]=[1, 1, 1],
                        ceil_mode : bool=False) -> Tensor

torch.mkldnn_rnn_layer(input : Tensor,
                       weight0 : Tensor,
                       weight1 : Tensor,
                       weight2 : Tensor,
                       weight3 : Tensor,
                       hx_ : Tensor,
                       cx_ : Tensor,
                       reverse : bool,
                       batch_sizes : List[int],
                       mode : int,
                       hidden_size : int,
                       num_layers : int,
                       has_biases : bool,
                       bidirectional : bool,
                       batch_first : bool,
                       train : bool) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.mkldnn_rnn_layer(input : Tensor,
                       weight0 : Tensor,
                       weight1 : Tensor,
                       weight2 : Tensor,
                       weight3 : Tensor,
                       hx_ : Tensor,
                       cx_ : Tensor,
                       reverse : bool,
                       batch_sizes : List[int],
                       mode : int,
                       hidden_size : int,
                       num_layers : int,
                       has_biases : bool,
                       bidirectional : bool,
                       batch_first : bool,
                       train : bool,
                       out0 : Tensor,
                       out1 : Tensor,
                       out2 : Tensor,
                       out3 : Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.mm(self : Tensor,
         mat2 : Tensor) -> Tensor

torch.mm(self : Tensor,
         mat2 : Tensor,
         out : Tensor) -> Tensor

torch.mode(self : Tensor,
           dim : int=-1,
           keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.mode(self : Tensor,
           dim : str,
           keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.mode(self : Tensor,
           dim : str,
           keepdim : bool=False,
           values : Tensor,
           indices : Tensor) -> Tuple[Tensor, Tensor]

torch.mode(self : Tensor,
           dim : int=-1,
           keepdim : bool=False,
           values : Tensor,
           indices : Tensor) -> Tuple[Tensor, Tensor]

torch.moveaxis(self : Tensor,
               source : List[int],
               destination : List[int]) -> Tensor

torch.moveaxis(self : Tensor,
               source : int,
               destination : int) -> Tensor

torch.movedim(self : Tensor,
              source : int,
              destination : int) -> Tensor

torch.movedim(self : Tensor,
              source : List[int],
              destination : List[int]) -> Tensor

torch.msort(self : Tensor) -> Tensor

torch.msort(self : Tensor,
            out : Tensor) -> Tensor

torch.mul(self : Tensor,
          other : Tensor) -> Tensor

torch.mul(self : Tensor,
          other : number) -> Tensor

torch.mul(self : Tensor,
          other : Tensor,
          out : Tensor) -> Tensor

torch.mul(self : Tensor,
          other : number,
          out : Tensor) -> Tensor

torch.mul(l : List[t],
          n : int) -> List[t]

torch.mul(n : int,
          l : List[t]) -> List[t]

torch.mul(a : int,
          b : int) -> int

torch.mul(a : complex,
          b : complex) -> complex

torch.mul(a : float,
          b : float) -> float

torch.mul(a : int,
          b : complex) -> complex

torch.mul(a : complex,
          b : int) -> complex

torch.mul(a : float,
          b : complex) -> complex

torch.mul(a : complex,
          b : float) -> complex

torch.mul(a : int,
          b : float) -> float

torch.mul(a : float,
          b : int) -> float

torch.mul(a : number,
          b : number) -> number

torch.multinomial(self : Tensor,
                  num_samples : int,
                  replacement : bool=False,
                  generator : Optional[Generator]) -> Tensor

torch.multinomial(self : Tensor,
                  num_samples : int,
                  replacement : bool=False,
                  generator : Optional[Generator],
                  out : Tensor) -> Tensor

torch.multiply(self : Tensor,
               other : Tensor) -> Tensor

torch.multiply(self : Tensor,
               other : number) -> Tensor

torch.multiply(self : Tensor,
               other : Tensor,
               out : Tensor) -> Tensor

torch.mv(self : Tensor,
         vec : Tensor) -> Tensor

torch.mv(self : Tensor,
         vec : Tensor,
         out : Tensor) -> Tensor

torch.mvlgamma(self : Tensor,
               p : int) -> Tensor

torch.mvlgamma(self : Tensor,
               p : int,
               out : Tensor) -> Tensor

torch.nan_to_num(self : Tensor,
                 nan : Optional[float],
                 posinf : Optional[float],
                 neginf : Optional[float]) -> Tensor

torch.nan_to_num(self : Tensor,
                 nan : Optional[float],
                 posinf : Optional[float],
                 neginf : Optional[float],
                 out : Tensor) -> Tensor

torch.nan_to_num_(self : Tensor,
                  nan : Optional[float],
                  posinf : Optional[float],
                  neginf : Optional[float]) -> Tensor

torch.nanmean(self : Tensor,
              dim : Optional[List[int]],
              keepdim : bool=False,
              dtype : Optional[int]) -> Tensor

torch.nanmean(self : Tensor,
              dim : Optional[List[int]],
              keepdim : bool=False,
              dtype : Optional[int],
              out : Tensor) -> Tensor

torch.nanmedian(self : Tensor) -> Tensor

torch.nanmedian(self : Tensor,
                dim : int,
                keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.nanmedian(self : Tensor,
                dim : int,
                keepdim : bool=False,
                values : Tensor,
                indices : Tensor) -> Tuple[Tensor, Tensor]

torch.nanmedian(self : Tensor,
                dim : str,
                keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.nanmedian(self : Tensor,
                dim : str,
                keepdim : bool=False,
                values : Tensor,
                indices : Tensor) -> Tuple[Tensor, Tensor]

torch.nanmedian(self : Tensor,
                out : Tensor) -> Tensor

torch.nanquantile(self : Tensor,
                  q : Tensor,
                  dim : Optional[int],
                  keepdim : bool=False,
                  interpolation : str=linear) -> Tensor

torch.nanquantile(self : Tensor,
                  q : float,
                  dim : Optional[int],
                  keepdim : bool=False,
                  interpolation : str=linear) -> Tensor

torch.nanquantile(self : Tensor,
                  q : Tensor,
                  dim : Optional[int],
                  keepdim : bool=False,
                  interpolation : str=linear,
                  out : Tensor) -> Tensor

torch.nanquantile(self : Tensor,
                  q : float,
                  dim : Optional[int],
                  keepdim : bool=False,
                  interpolation : str=linear,
                  out : Tensor) -> Tensor

torch.nansum(self : Tensor,
             dim : Optional[List[int]],
             keepdim : bool=False,
             dtype : Optional[int]) -> Tensor

torch.nansum(self : Tensor,
             dim : Optional[List[int]],
             keepdim : bool=False,
             dtype : Optional[int],
             out : Tensor) -> Tensor

torch.narrow(self : Tensor,
             dim : int,
             start : int,
             length : int) -> Tensor

torch.narrow(self : Tensor,
             dim : int,
             start : Tensor,
             length : int) -> Tensor

torch.narrow_copy(self : Tensor,
                  dim : int,
                  start : int,
                  length : int) -> Tensor

torch.narrow_copy(self : Tensor,
                  dim : int,
                  start : int,
                  length : int,
                  out : Tensor) -> Tensor

torch.native_batch_norm(input : Tensor,
                        weight : Optional[Tensor],
                        bias : Optional[Tensor],
                        running_mean : Optional[Tensor],
                        running_var : Optional[Tensor],
                        training : bool,
                        momentum : float,
                        eps : float) -> Tuple[Tensor, Tensor, Tensor]

torch.native_batch_norm(input : Tensor,
                        weight : Optional[Tensor],
                        bias : Optional[Tensor],
                        running_mean : Optional[Tensor],
                        running_var : Optional[Tensor],
                        training : bool,
                        momentum : float,
                        eps : float,
                        out : Tensor,
                        save_mean : Tensor,
                        save_invstd : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch.native_channel_shuffle(self : Tensor,
                             groups : int) -> Tensor

torch.native_dropout(input : Tensor,
                     p : float,
                     train : Optional[bool]) -> Tuple[Tensor, Tensor]

torch.native_dropout(input : Tensor,
                     p : float,
                     train : Optional[bool],
                     out0 : Tensor,
                     out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.native_group_norm(input : Tensor,
                        weight : Optional[Tensor],
                        bias : Optional[Tensor],
                        N : int,
                        C : int,
                        HxW : int,
                        group : int,
                        eps : float) -> Tuple[Tensor, Tensor, Tensor]

torch.native_group_norm(input : Tensor,
                        weight : Optional[Tensor],
                        bias : Optional[Tensor],
                        N : int,
                        C : int,
                        HxW : int,
                        group : int,
                        eps : float,
                        out0 : Tensor,
                        out1 : Tensor,
                        out2 : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch.native_layer_norm(input : Tensor,
                        normalized_shape : List[int],
                        weight : Optional[Tensor],
                        bias : Optional[Tensor],
                        eps : float) -> Tuple[Tensor, Tensor, Tensor]

torch.native_layer_norm(input : Tensor,
                        normalized_shape : List[int],
                        weight : Optional[Tensor],
                        bias : Optional[Tensor],
                        eps : float,
                        out0 : Tensor,
                        out1 : Tensor,
                        out2 : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch.native_norm(self : Tensor,
                  p : number=2,
                  out : Tensor) -> Tensor

torch.native_norm(self : Tensor,
                  p : Optional[number],
                  dim : List[int],
                  keepdim : bool,
                  dtype : Optional[int],
                  out : Tensor) -> Tensor

torch.native_norm(self : Tensor,
                  p : number=2) -> Tensor

torch.native_norm(self : Tensor,
                  p : Optional[number],
                  dim : List[int],
                  keepdim : bool,
                  dtype : Optional[int]) -> Tensor

torch.ne(self : Tensor,
         other : Tensor) -> Tensor

torch.ne(self : Tensor,
         other : number) -> Tensor

torch.ne(self : Tensor,
         other : number,
         out : Tensor) -> Tensor

torch.ne(self : Tensor,
         other : Tensor,
         out : Tensor) -> Tensor

torch.ne(a : List[int],
         b : List[int]) -> bool

torch.ne(a : Device,
         b : Device) -> bool

torch.ne(a : bool,
         b : bool) -> bool

torch.ne(a : AnyEnumType,
         b : AnyEnumType) -> bool

torch.ne(a : int,
         b : int) -> bool

torch.ne(a : complex,
         b : complex) -> bool

torch.ne(a : float,
         b : float) -> bool

torch.ne(a : int,
         b : float) -> bool

torch.ne(a : float,
         b : int) -> bool

torch.ne(a : float,
         b : complex) -> bool

torch.ne(a : complex,
         b : float) -> bool

torch.ne(a : number,
         b : number) -> bool

torch.ne(a : str,
         b : str) -> bool

torch.ne(a : List[float],
         b : List[float]) -> bool

torch.ne(a : List[Tensor],
         b : List[Tensor]) -> bool

torch.ne(a : List[bool],
         b : List[bool]) -> bool

torch.ne(a : List[str],
         b : List[str]) -> bool

torch.neg(self : Tensor) -> Tensor

torch.neg(self : Tensor,
          out : Tensor) -> Tensor

torch.neg(a : int) -> int

torch.neg(a : float) -> float

torch.neg(a : complex) -> complex

torch.neg(a : number) -> number

torch.neg_(self : Tensor) -> Tensor

torch.negative(self : Tensor) -> Tensor

torch.negative(self : Tensor,
               out : Tensor) -> Tensor

torch.negative_(self : Tensor) -> Tensor

torch.nextafter(self : Tensor,
                other : Tensor) -> Tensor

torch.nextafter(self : Tensor,
                other : Tensor,
                out : Tensor) -> Tensor

torch.nonzero(self : Tensor) -> Tensor

torch.nonzero(self : Tensor,
              out : Tensor) -> Tensor

torch.nonzero_static(self : Tensor,
                     size : int,
                     fill_value : int=-1) -> Tensor

torch.nonzero_static(self : Tensor,
                     size : int,
                     fill_value : int=-1,
                     out : Tensor) -> Tensor

torch.norm_except_dim(v : Tensor,
                      pow : int=2,
                      dim : int=0) -> Tensor

torch.normal(mean : Tensor,
             std : float=1.0,
             generator : Optional[Generator]) -> Tensor

torch.normal(mean : Tensor,
             std : float=1.0,
             generator : Optional[Generator],
             out : Tensor) -> Tensor

torch.normal(mean : float,
             std : Tensor,
             generator : Optional[Generator],
             out : Tensor) -> Tensor

torch.normal(mean : float,
             std : Tensor,
             generator : Optional[Generator]) -> Tensor

torch.normal(mean : Tensor,
             std : Tensor,
             generator : Optional[Generator]) -> Tensor

torch.normal(mean : Tensor,
             std : Tensor,
             generator : Optional[Generator],
             out : Tensor) -> Tensor

torch.normal(mean : float,
             std : float,
             size : List[int],
             generator : Optional[Generator],
             dtype : Optional[int],
             layout : Optional[int],
             device : Optional[Device],
             pin_memory : Optional[bool]) -> Tensor

torch.normal(mean : float,
             std : float,
             size : List[int],
             generator : Optional[Generator],
             out : Tensor) -> Tensor

torch.normal(self : Tensor,
             mean : float=0.0,
             std : float=1.0,
             generator : Optional[Generator],
             out : Tensor) -> Tensor

torch.not_equal(self : Tensor,
                other : Tensor) -> Tensor

torch.not_equal(self : Tensor,
                other : number) -> Tensor

torch.not_equal(self : Tensor,
                other : number,
                out : Tensor) -> Tensor

torch.not_equal(self : Tensor,
                other : Tensor,
                out : Tensor) -> Tensor

torch.nuclear_norm(self : Tensor,
                   keepdim : bool=False) -> Tensor

torch.nuclear_norm(self : Tensor,
                   dim : List[int],
                   keepdim : bool=False) -> Tensor

torch.nuclear_norm(self : Tensor,
                   keepdim : bool=False,
                   out : Tensor) -> Tensor

torch.nuclear_norm(self : Tensor,
                   dim : List[int],
                   keepdim : bool=False,
                   out : Tensor) -> Tensor

torch.numel(self : Tensor) -> int

torch.ones(size : List[int],
           names : Optional[List[str]],
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.ones(size : List[int],
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.ones(size : List[int],
           names : Optional[List[str]],
           out : Tensor) -> Tensor

torch.ones(size : List[int],
           out : Tensor) -> Tensor

torch.ones_like(self : Tensor,
                dtype : Optional[int],
                layout : Optional[int],
                device : Optional[Device],
                pin_memory : Optional[bool],
                memory_format : Optional[int]) -> Tensor

torch.ones_like(self : Tensor,
                memory_format : Optional[int],
                out : Tensor) -> Tensor

torch.orgqr(self : Tensor,
            input2 : Tensor) -> Tensor

torch.orgqr(self : Tensor,
            input2 : Tensor,
            out : Tensor) -> Tensor

torch.ormqr(self : Tensor,
            input2 : Tensor,
            input3 : Tensor,
            left : bool=True,
            transpose : bool=False) -> Tensor

torch.ormqr(self : Tensor,
            input2 : Tensor,
            input3 : Tensor,
            left : bool=True,
            transpose : bool=False,
            out : Tensor) -> Tensor

torch.outer(self : Tensor,
            vec2 : Tensor) -> Tensor

torch.outer(self : Tensor,
            vec2 : Tensor,
            out : Tensor) -> Tensor

torch.pairwise_distance(x1 : Tensor,
                        x2 : Tensor,
                        p : float=2.0,
                        eps : float=1e-06,
                        keepdim : bool=False) -> Tensor

torch.pdist(self : Tensor,
            p : float=2.0) -> Tensor

torch.permute(self : Tensor,
              dims : List[int]) -> Tensor

torch.permute_copy(self : Tensor,
                   dims : List[int]) -> Tensor

torch.permute_copy(self : Tensor,
                   dims : List[int],
                   out : Tensor) -> Tensor

torch.pinverse(self : Tensor,
               rcond : float=1e-15) -> Tensor

torch.pixel_shuffle(self : Tensor,
                    upscale_factor : int) -> Tensor

torch.pixel_shuffle(self : Tensor,
                    upscale_factor : int,
                    out : Tensor) -> Tensor

torch.pixel_unshuffle(self : Tensor,
                      downscale_factor : int) -> Tensor

torch.pixel_unshuffle(self : Tensor,
                      downscale_factor : int,
                      out : Tensor) -> Tensor

torch.poisson(self : Tensor,
              generator : Optional[Generator]) -> Tensor

torch.poisson(self : Tensor,
              generator : Optional[Generator],
              out : Tensor) -> Tensor

torch.poisson_nll_loss(input : Tensor,
                       target : Tensor,
                       log_input : bool,
                       full : bool,
                       eps : float,
                       reduction : int) -> Tensor

torch.polar(abs : Tensor,
            angle : Tensor) -> Tensor

torch.polar(abs : Tensor,
            angle : Tensor,
            out : Tensor) -> Tensor

torch.polar(a : int,
            b : int) -> complex

torch.polar(a : float,
            b : float) -> complex

torch.polar(a : int,
            b : float) -> complex

torch.polar(a : float,
            b : int) -> complex

torch.polar(a : number,
            b : number) -> number

torch.polygamma(n : int,
                self : Tensor) -> Tensor

torch.polygamma(n : int,
                self : Tensor,
                out : Tensor) -> Tensor

torch.positive(self : Tensor) -> Tensor

torch.pow(self : Tensor,
          exponent : Tensor) -> Tensor

torch.pow(self : Tensor,
          exponent : number) -> Tensor

torch.pow(self : number,
          exponent : Tensor) -> Tensor

torch.pow(self : number,
          exponent : Tensor,
          out : Tensor) -> Tensor

torch.pow(self : Tensor,
          exponent : number,
          out : Tensor) -> Tensor

torch.pow(self : Tensor,
          exponent : Tensor,
          out : Tensor) -> Tensor

torch.pow(a : int,
          b : int) -> float

torch.pow(a : complex,
          b : complex) -> complex

torch.pow(a : float,
          b : float) -> float

torch.pow(a : int,
          b : float) -> float

torch.pow(a : float,
          b : int) -> float

torch.pow(a : float,
          b : complex) -> complex

torch.pow(a : complex,
          b : float) -> complex

torch.pow(a : number,
          b : number) -> float

torch.pow(a : int,
          b : int) -> int

torch.prelu(self : Tensor,
            weight : Tensor) -> Tensor

torch.prod(self : Tensor,
           dtype : Optional[int]) -> Tensor

torch.prod(self : Tensor,
           dim : int,
           keepdim : bool=False,
           dtype : Optional[int]) -> Tensor

torch.prod(self : Tensor,
           dim : str,
           keepdim : bool=False,
           dtype : Optional[int]) -> Tensor

torch.prod(self : Tensor,
           dim : str,
           keepdim : bool=False,
           dtype : Optional[int],
           out : Tensor) -> Tensor

torch.prod(self : Tensor,
           dim : int,
           keepdim : bool=False,
           dtype : Optional[int],
           out : Tensor) -> Tensor

torch.prod(self : Tensor,
           dtype : Optional[int],
           out : Tensor) -> Tensor

torch.promote_types(type1 : int,
                    type2 : int) -> int

torch.put(self : Tensor,
          index : Tensor,
          source : Tensor,
          accumulate : bool=False) -> Tensor

torch.put(self : Tensor,
          index : Tensor,
          source : Tensor,
          accumulate : bool=False,
          out : Tensor) -> Tensor

torch.q_per_channel_axis(self : Tensor) -> int

torch.q_per_channel_scales(self : Tensor,
                           out : Tensor) -> Tensor

torch.q_per_channel_scales(self : Tensor) -> Tensor

torch.q_per_channel_zero_points(self : Tensor,
                                out : Tensor) -> Tensor

torch.q_per_channel_zero_points(self : Tensor) -> Tensor

torch.q_scale(self : Tensor) -> float

torch.q_zero_point(self : Tensor) -> int

torch.qr(self : Tensor,
         some : bool=True) -> Tuple[Tensor, Tensor]

torch.qr(self : Tensor,
         some : bool=True,
         Q : Tensor,
         R : Tensor) -> Tuple[Tensor, Tensor]

torch.qscheme(self : Tensor) -> QScheme

torch.quantile(self : Tensor,
               q : Tensor,
               dim : Optional[int],
               keepdim : bool=False,
               interpolation : str=linear) -> Tensor

torch.quantile(self : Tensor,
               q : float,
               dim : Optional[int],
               keepdim : bool=False,
               interpolation : str=linear) -> Tensor

torch.quantile(self : Tensor,
               q : Tensor,
               dim : Optional[int],
               keepdim : bool=False,
               interpolation : str=linear,
               out : Tensor) -> Tensor

torch.quantile(self : Tensor,
               q : float,
               dim : Optional[int],
               keepdim : bool=False,
               interpolation : str=linear,
               out : Tensor) -> Tensor

torch.quantize_per_channel(self : Tensor,
                           scales : Tensor,
                           zero_points : Tensor,
                           axis : int,
                           dtype : int) -> Tensor

torch.quantize_per_channel(self : Tensor,
                           scales : Tensor,
                           zero_points : Tensor,
                           axis : int,
                           dtype : int,
                           out : Tensor) -> Tensor

torch.quantize_per_tensor(self : Tensor,
                          scale : float,
                          zero_point : int,
                          dtype : int) -> Tensor

torch.quantize_per_tensor(self : Tensor,
                          scale : Tensor,
                          zero_point : Tensor,
                          dtype : int) -> Tensor

torch.quantize_per_tensor(tensors : List[Tensor],
                          scales : Tensor,
                          zero_points : Tensor,
                          dtype : int) -> List[Tensor]

torch.quantize_per_tensor(self : Tensor,
                          scale : float,
                          zero_point : int,
                          dtype : int,
                          out : Tensor) -> Tensor

torch.quantize_per_tensor(self : Tensor,
                          scale : Tensor,
                          zero_point : Tensor,
                          dtype : int,
                          out : Tensor) -> Tensor

torch.quantize_per_tensor(tensors : List[Tensor],
                          scales : Tensor,
                          zero_points : Tensor,
                          dtype : int,
                          out : List[Tensor]) -> Tuple[]

torch.quantize_per_tensor_dynamic(self : Tensor,
                                  dtype : int,
                                  reduce_range : bool) -> Tensor

torch.quantize_per_tensor_dynamic(self : Tensor,
                                  dtype : int,
                                  reduce_range : bool,
                                  out : Tensor) -> Tensor

torch.quantized_batch_norm(input : Tensor,
                           weight : Optional[Tensor],
                           bias : Optional[Tensor],
                           mean : Tensor,
                           var : Tensor,
                           eps : float,
                           output_scale : float,
                           output_zero_point : int,
                           out : Tensor) -> Tensor

torch.quantized_batch_norm(input : Tensor,
                           weight : Optional[Tensor],
                           bias : Optional[Tensor],
                           mean : Tensor,
                           var : Tensor,
                           eps : float,
                           output_scale : float,
                           output_zero_point : int) -> Tensor

torch.quantized_gru_cell(input : Tensor,
                         hx : Tensor,
                         w_ih : Tensor,
                         w_hh : Tensor,
                         b_ih : Tensor,
                         b_hh : Tensor,
                         packed_ih : Tensor,
                         packed_hh : Tensor,
                         col_offsets_ih : Tensor,
                         col_offsets_hh : Tensor,
                         scale_ih : number,
                         scale_hh : number,
                         zero_point_ih : number,
                         zero_point_hh : number) -> Tensor

torch.quantized_lstm_cell(input : Tensor,
                          hx : List[Tensor],
                          w_ih : Tensor,
                          w_hh : Tensor,
                          b_ih : Tensor,
                          b_hh : Tensor,
                          packed_ih : Tensor,
                          packed_hh : Tensor,
                          col_offsets_ih : Tensor,
                          col_offsets_hh : Tensor,
                          scale_ih : number,
                          scale_hh : number,
                          zero_point_ih : number,
                          zero_point_hh : number) -> Tuple[Tensor, Tensor]

torch.quantized_max_pool1d(self : Tensor,
                           kernel_size : List[int],
                           stride : List[int]=[],
                           padding : List[int]=[0],
                           dilation : List[int]=[1],
                           ceil_mode : bool=False,
                           out : Tensor) -> Tensor

torch.quantized_max_pool1d(self : Tensor,
                           kernel_size : List[int],
                           stride : List[int]=[],
                           padding : List[int]=[0],
                           dilation : List[int]=[1],
                           ceil_mode : bool=False) -> Tensor

torch.quantized_max_pool2d(self : Tensor,
                           kernel_size : List[int],
                           stride : List[int]=[],
                           padding : List[int]=[0, 0],
                           dilation : List[int]=[1, 1],
                           ceil_mode : bool=False,
                           out : Tensor) -> Tensor

torch.quantized_max_pool2d(self : Tensor,
                           kernel_size : List[int],
                           stride : List[int]=[],
                           padding : List[int]=[0, 0],
                           dilation : List[int]=[1, 1],
                           ceil_mode : bool=False) -> Tensor

torch.quantized_max_pool3d(self : Tensor,
                           kernel_size : List[int],
                           stride : List[int]=[],
                           padding : List[int]=[0, 0, 0],
                           dilation : List[int]=[1, 1, 1],
                           ceil_mode : bool=False,
                           out : Tensor) -> Tensor

torch.quantized_max_pool3d(self : Tensor,
                           kernel_size : List[int],
                           stride : List[int]=[],
                           padding : List[int]=[0, 0, 0],
                           dilation : List[int]=[1, 1, 1],
                           ceil_mode : bool=False) -> Tensor

torch.quantized_rnn_relu_cell(input : Tensor,
                              hx : Tensor,
                              w_ih : Tensor,
                              w_hh : Tensor,
                              b_ih : Tensor,
                              b_hh : Tensor,
                              packed_ih : Tensor,
                              packed_hh : Tensor,
                              col_offsets_ih : Tensor,
                              col_offsets_hh : Tensor,
                              scale_ih : number,
                              scale_hh : number,
                              zero_point_ih : number,
                              zero_point_hh : number) -> Tensor

torch.quantized_rnn_tanh_cell(input : Tensor,
                              hx : Tensor,
                              w_ih : Tensor,
                              w_hh : Tensor,
                              b_ih : Tensor,
                              b_hh : Tensor,
                              packed_ih : Tensor,
                              packed_hh : Tensor,
                              col_offsets_ih : Tensor,
                              col_offsets_hh : Tensor,
                              scale_ih : number,
                              scale_hh : number,
                              zero_point_ih : number,
                              zero_point_hh : number) -> Tensor

torch.rad2deg(self : Tensor) -> Tensor

torch.rad2deg(self : Tensor,
              out : Tensor) -> Tensor

torch.rad2deg_(self : Tensor) -> Tensor

torch.rand(size : List[int],
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.rand(size : List[int],
           generator : Optional[Generator],
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.rand(size : List[int],
           names : Optional[List[str]],
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.rand(size : List[int],
           generator : Optional[Generator],
           names : Optional[List[str]],
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.rand(size : List[int],
           out : Tensor) -> Tensor

torch.rand(size : List[int],
           generator : Optional[Generator],
           out : Tensor) -> Tensor

torch.rand(size : List[int],
           names : Optional[List[str]],
           out : Tensor) -> Tensor

torch.rand(size : List[int],
           generator : Optional[Generator],
           names : Optional[List[str]],
           out : Tensor) -> Tensor

torch.rand_like(self : Tensor,
                dtype : Optional[int],
                layout : Optional[int],
                device : Optional[Device],
                pin_memory : Optional[bool],
                memory_format : Optional[int]) -> Tensor

torch.rand_like(self : Tensor,
                memory_format : Optional[int],
                out : Tensor) -> Tensor

torch.randint(high : int,
              size : List[int],
              dtype : Optional[int]=4,
              layout : Optional[int],
              device : Optional[Device],
              pin_memory : Optional[bool]) -> Tensor

torch.randint(high : int,
              size : List[int],
              generator : Optional[Generator],
              dtype : Optional[int]=4,
              layout : Optional[int],
              device : Optional[Device],
              pin_memory : Optional[bool]) -> Tensor

torch.randint(low : int,
              high : int,
              size : List[int],
              dtype : Optional[int]=4,
              layout : Optional[int],
              device : Optional[Device],
              pin_memory : Optional[bool]) -> Tensor

torch.randint(low : int,
              high : int,
              size : List[int],
              generator : Optional[Generator],
              dtype : Optional[int]=4,
              layout : Optional[int],
              device : Optional[Device],
              pin_memory : Optional[bool]) -> Tensor

torch.randint(high : int,
              size : List[int],
              out : Tensor) -> Tensor

torch.randint(high : int,
              size : List[int],
              generator : Optional[Generator],
              out : Tensor) -> Tensor

torch.randint(low : int,
              high : int,
              size : List[int],
              out : Tensor) -> Tensor

torch.randint(low : int,
              high : int,
              size : List[int],
              generator : Optional[Generator],
              out : Tensor) -> Tensor

torch.randint_like(self : Tensor,
                   high : int,
                   dtype : Optional[int],
                   layout : Optional[int],
                   device : Optional[Device],
                   pin_memory : Optional[bool],
                   memory_format : Optional[int]) -> Tensor

torch.randint_like(self : Tensor,
                   low : int,
                   high : int,
                   dtype : Optional[int],
                   layout : Optional[int],
                   device : Optional[Device],
                   pin_memory : Optional[bool],
                   memory_format : Optional[int]) -> Tensor

torch.randint_like(self : Tensor,
                   high : int,
                   memory_format : Optional[int],
                   out : Tensor) -> Tensor

torch.randint_like(self : Tensor,
                   low : int,
                   high : int,
                   memory_format : Optional[int],
                   out : Tensor) -> Tensor

torch.randn(size : List[int],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.randn(size : List[int],
            generator : Optional[Generator],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.randn(size : List[int],
            names : Optional[List[str]],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.randn(size : List[int],
            generator : Optional[Generator],
            names : Optional[List[str]],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.randn(size : List[int],
            out : Tensor) -> Tensor

torch.randn(size : List[int],
            generator : Optional[Generator],
            out : Tensor) -> Tensor

torch.randn(size : List[int],
            names : Optional[List[str]],
            out : Tensor) -> Tensor

torch.randn(size : List[int],
            generator : Optional[Generator],
            names : Optional[List[str]],
            out : Tensor) -> Tensor

torch.randn_like(self : Tensor,
                 dtype : Optional[int],
                 layout : Optional[int],
                 device : Optional[Device],
                 pin_memory : Optional[bool],
                 memory_format : Optional[int]) -> Tensor

torch.randn_like(self : Tensor,
                 memory_format : Optional[int],
                 out : Tensor) -> Tensor

torch.randperm(n : int,
               dtype : Optional[int]=4,
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.randperm(n : int,
               generator : Optional[Generator],
               dtype : Optional[int]=4,
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.randperm(n : int,
               out : Tensor) -> Tensor

torch.randperm(n : int,
               generator : Optional[Generator],
               out : Tensor) -> Tensor

torch.range(start : number,
            end : number,
            step : number=1,
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.range(start : number,
            end : number,
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.range(start : number,
            end : number,
            step : number=1,
            out : Tensor) -> Tensor

torch.range(start : number,
            end : number,
            out : Tensor) -> Tensor

torch.ravel(self : Tensor) -> Tensor

torch.real(self : Tensor) -> Tensor

torch.reciprocal(self : Tensor) -> Tensor

torch.reciprocal(self : Tensor,
                 out : Tensor) -> Tensor

torch.reciprocal_(self : Tensor) -> Tensor

torch.relu(self : Tensor) -> Tensor

torch.relu(self : Tensor,
           out : Tensor) -> Tensor

torch.relu_(self : Tensor) -> Tensor

torch.remainder(self : Tensor,
                other : Tensor) -> Tensor

torch.remainder(self : Tensor,
                other : number) -> Tensor

torch.remainder(self : number,
                other : Tensor) -> Tensor

torch.remainder(self : Tensor,
                other : Tensor,
                out : Tensor) -> Tensor

torch.remainder(self : Tensor,
                other : number,
                out : Tensor) -> Tensor

torch.remainder(self : number,
                other : Tensor,
                out : Tensor) -> Tensor

torch.remainder(a : int,
                b : int) -> int

torch.remainder(a : float,
                b : float) -> float

torch.remainder(a : int,
                b : float) -> float

torch.remainder(a : float,
                b : int) -> float

torch.remainder(a : number,
                b : number) -> number

torch.renorm(self : Tensor,
             p : number,
             dim : int,
             maxnorm : number) -> Tensor

torch.renorm(self : Tensor,
             p : number,
             dim : int,
             maxnorm : number,
             out : Tensor) -> Tensor

torch.repeat_interleave(repeats : Tensor,
                        output_size : Optional[int]) -> Tensor

torch.repeat_interleave(self : Tensor,
                        repeats : Tensor,
                        dim : Optional[int],
                        output_size : Optional[int]) -> Tensor

torch.repeat_interleave(self : Tensor,
                        repeats : int,
                        dim : Optional[int],
                        output_size : Optional[int]) -> Tensor

torch.repeat_interleave(repeats : Tensor,
                        output_size : Optional[int],
                        out : Tensor) -> Tensor

torch.reshape(self : Tensor,
              shape : List[int]) -> Tensor

torch.resize_as_(self : Tensor,
                 the_template : Tensor,
                 memory_format : Optional[int]) -> Tensor

torch.resize_as_sparse_(self : Tensor,
                        the_template : Tensor) -> Tensor

torch.resolve_conj(self : Tensor) -> Tensor

torch.resolve_neg(self : Tensor) -> Tensor

torch.result_type(tensor : Tensor,
                  other : Tensor) -> int

torch.result_type(tensor : Tensor,
                  other : number) -> int

torch.result_type(scalar : number,
                  tensor : Tensor) -> int

torch.result_type(scalar1 : number,
                  scalar2 : number) -> int

torch.rms_norm(input : Tensor,
               normalized_shape : List[int],
               weight : Optional[Tensor],
               eps : Optional[float]) -> Tensor

torch.rnn_relu(input : Tensor,
               hx : Tensor,
               params : List[Tensor],
               has_biases : bool,
               num_layers : int,
               dropout : float,
               train : bool,
               bidirectional : bool,
               batch_first : bool) -> Tuple[Tensor, Tensor]

torch.rnn_relu(data : Tensor,
               batch_sizes : Tensor,
               hx : Tensor,
               params : List[Tensor],
               has_biases : bool,
               num_layers : int,
               dropout : float,
               train : bool,
               bidirectional : bool) -> Tuple[Tensor, Tensor]

torch.rnn_relu_cell(input : Tensor,
                    hx : Tensor,
                    w_ih : Tensor,
                    w_hh : Tensor,
                    b_ih : Optional[Tensor],
                    b_hh : Optional[Tensor]) -> Tensor

torch.rnn_tanh(input : Tensor,
               hx : Tensor,
               params : List[Tensor],
               has_biases : bool,
               num_layers : int,
               dropout : float,
               train : bool,
               bidirectional : bool,
               batch_first : bool) -> Tuple[Tensor, Tensor]

torch.rnn_tanh(data : Tensor,
               batch_sizes : Tensor,
               hx : Tensor,
               params : List[Tensor],
               has_biases : bool,
               num_layers : int,
               dropout : float,
               train : bool,
               bidirectional : bool) -> Tuple[Tensor, Tensor]

torch.rnn_tanh_cell(input : Tensor,
                    hx : Tensor,
                    w_ih : Tensor,
                    w_hh : Tensor,
                    b_ih : Optional[Tensor],
                    b_hh : Optional[Tensor]) -> Tensor

torch.roll(self : Tensor,
           shifts : List[int],
           dims : List[int]=[]) -> Tensor

torch.roll(self : Tensor,
           shifts : List[int],
           dims : List[int]=[],
           out : Tensor) -> Tensor

torch.rot90(self : Tensor,
            k : int=1,
            dims : List[int]=[0, 1]) -> Tensor

torch.rot90(self : Tensor,
            k : int=1,
            dims : List[int]=[0, 1],
            out : Tensor) -> Tensor

torch.round(self : Tensor) -> Tensor

torch.round(self : Tensor,
            decimals : int) -> Tensor

torch.round(self : Tensor,
            out : Tensor) -> Tensor

torch.round(self : Tensor,
            decimals : int,
            out : Tensor) -> Tensor

torch.round(a : int) -> float

torch.round(a : float) -> float

torch.round(a : number) -> number

torch.round_(self : Tensor) -> Tensor

torch.round_(self : Tensor,
             decimals : int) -> Tensor

torch.row_indices_copy(self : Tensor) -> Tensor

torch.row_indices_copy(self : Tensor,
                       out : Tensor) -> Tensor

torch.row_stack(tensors : List[Tensor]) -> Tensor

torch.row_stack(tensors : List[Tensor],
                out : Tensor) -> Tensor

torch.rrelu(self : Tensor,
            lower : number=0.125,
            upper : number=0.3333333333333333,
            training : bool=False,
            generator : Optional[Generator]) -> Tensor

torch.rrelu_(self : Tensor,
             lower : number=0.125,
             upper : number=0.3333333333333333,
             training : bool=False,
             generator : Optional[Generator]) -> Tensor

torch.rsqrt(self : Tensor) -> Tensor

torch.rsqrt(self : Tensor,
            out : Tensor) -> Tensor

torch.rsqrt_(self : Tensor) -> Tensor

torch.rsub(self : Tensor,
           other : Tensor,
           alpha : number=1) -> Tensor

torch.rsub(self : Tensor,
           other : number,
           alpha : number=1) -> Tensor

torch.rsub(self : Tensor,
           other : Tensor,
           alpha : number=1,
           out : Tensor) -> Tensor

torch.rsub(self : Tensor,
           other : number,
           alpha : number=1,
           out : Tensor) -> Tensor

torch.save(item : t,
           filename : str) -> Tuple[]

torch.scalar_tensor(s : number,
                    dtype : Optional[int],
                    layout : Optional[int],
                    device : Optional[Device],
                    pin_memory : Optional[bool]) -> Tensor

torch.scalar_tensor(s : number,
                    out : Tensor) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              value : number) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              src : Tensor) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              src : Tensor,
              reduce : str) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              value : number,
              reduce : str) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              src : Tensor,
              out : Tensor) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              value : number,
              out : Tensor) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              src : Tensor,
              reduce : str,
              out : Tensor) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              value : number,
              reduce : str,
              out : Tensor) -> Tensor

torch.scatter(self : Tensor,
              dim : str,
              index : Tensor,
              src : Tensor) -> Tensor

torch.scatter(self : Tensor,
              dim : str,
              index : Tensor,
              value : number) -> Tensor

torch.scatter_add(self : Tensor,
                  dim : int,
                  index : Tensor,
                  src : Tensor) -> Tensor

torch.scatter_add(self : Tensor,
                  dim : int,
                  index : Tensor,
                  src : Tensor,
                  out : Tensor) -> Tensor

torch.scatter_add(self : Tensor,
                  dim : str,
                  index : Tensor,
                  src : Tensor) -> Tensor

torch.scatter_reduce(self : Tensor,
                     dim : int,
                     index : Tensor,
                     src : Tensor,
                     reduce : str,
                     include_self : bool=True) -> Tensor

torch.scatter_reduce(self : Tensor,
                     dim : int,
                     index : Tensor,
                     src : Tensor,
                     reduce : str,
                     include_self : bool=True,
                     out : Tensor) -> Tensor

torch.searchsorted(sorted_sequence : Tensor,
                   self : Tensor,
                   out_int32 : bool=False,
                   right : bool=False,
                   side : Optional[str],
                   sorter : Optional[Tensor]) -> Tensor

torch.searchsorted(sorted_sequence : Tensor,
                   self : Tensor,
                   out_int32 : bool=False,
                   right : bool=False,
                   side : Optional[str],
                   sorter : Optional[Tensor],
                   out : Tensor) -> Tensor

torch.searchsorted(sorted_sequence : Tensor,
                   self : number,
                   out_int32 : bool=False,
                   right : bool=False,
                   side : Optional[str],
                   sorter : Optional[Tensor]) -> Tensor

torch.searchsorted(sorted_sequence : Tensor,
                   self : number,
                   out_int32 : bool=False,
                   right : bool=False,
                   side : Optional[str],
                   sorter : Optional[Tensor],
                   out : Tensor) -> Tensor

torch.seed(self : Generator) -> int

torch.segment_reduce(data : Tensor,
                     reduce : str,
                     lengths : Optional[Tensor],
                     indices : Optional[Tensor],
                     offsets : Optional[Tensor],
                     axis : int=0,
                     unsafe : bool=False,
                     initial : Optional[number]) -> Tensor

torch.segment_reduce(data : Tensor,
                     reduce : str,
                     lengths : Optional[Tensor],
                     indices : Optional[Tensor],
                     offsets : Optional[Tensor],
                     axis : int=0,
                     unsafe : bool=False,
                     initial : Optional[number],
                     out : Tensor) -> Tensor

torch.select(self : Tensor,
             dim : str,
             index : int) -> Tensor

torch.select(self : Tensor,
             dim : int,
             index : int) -> Tensor

torch.select(list : List[t],
             idx : int) -> t

torch.select_copy(self : Tensor,
                  dim : int,
                  index : int) -> Tensor

torch.select_copy(self : Tensor,
                  dim : int,
                  index : int,
                  out : Tensor) -> Tensor

torch.select_scatter(self : Tensor,
                     src : Tensor,
                     dim : int,
                     index : int) -> Tensor

torch.select_scatter(self : Tensor,
                     src : Tensor,
                     dim : int,
                     index : int,
                     out : Tensor) -> Tensor

torch.selu(self : Tensor) -> Tensor

torch.selu_(self : Tensor) -> Tensor

torch.set_grad_enabled(val : bool) -> Tuple[]

torch.sgn(self : Tensor) -> Tensor

torch.sgn(self : Tensor,
          out : Tensor) -> Tensor

torch.sigmoid(self : Tensor) -> Tensor

torch.sigmoid(self : Tensor,
              out : Tensor) -> Tensor

torch.sigmoid_(self : Tensor) -> Tensor

torch.sign(self : Tensor) -> Tensor

torch.sign(self : Tensor,
           out : Tensor) -> Tensor

torch.signbit(self : Tensor) -> Tensor

torch.signbit(self : Tensor,
              out : Tensor) -> Tensor

torch.sin(self : Tensor) -> Tensor

torch.sin(self : Tensor,
          out : Tensor) -> Tensor

torch.sin(a : int) -> float

torch.sin(a : float) -> float

torch.sin(a : complex) -> complex

torch.sin(a : number) -> number

torch.sin_(self : Tensor) -> Tensor

torch.sinc(self : Tensor) -> Tensor

torch.sinc(self : Tensor,
           out : Tensor) -> Tensor

torch.sinc_(self : Tensor) -> Tensor

torch.sinh(self : Tensor) -> Tensor

torch.sinh(self : Tensor,
           out : Tensor) -> Tensor

torch.sinh(a : int) -> float

torch.sinh(a : float) -> float

torch.sinh(a : complex) -> complex

torch.sinh(a : number) -> number

torch.sinh_(self : Tensor) -> Tensor

torch.slice_copy(self : Tensor,
                 dim : int=0,
                 start : Optional[int],
                 end : Optional[int],
                 step : int=1) -> Tensor

torch.slice_copy(self : Tensor,
                 dim : int=0,
                 start : Optional[int],
                 end : Optional[int],
                 step : int=1,
                 out : Tensor) -> Tensor

torch.slice_inverse(self : Tensor,
                    src : Tensor,
                    dim : int=0,
                    start : Optional[int],
                    end : Optional[int],
                    step : int=1) -> Tensor

torch.slice_scatter(self : Tensor,
                    src : Tensor,
                    dim : int=0,
                    start : Optional[int],
                    end : Optional[int],
                    step : int=1) -> Tensor

torch.slice_scatter(self : Tensor,
                    src : Tensor,
                    dim : int=0,
                    start : Optional[int],
                    end : Optional[int],
                    step : int=1,
                    out : Tensor) -> Tensor

torch.slogdet(self : Tensor) -> Tuple[Tensor, Tensor]

torch.slogdet(self : Tensor,
              sign : Tensor,
              logabsdet : Tensor) -> Tuple[Tensor, Tensor]

torch.smm(self : Tensor,
          mat2 : Tensor) -> Tensor

torch.softmax(self : Tensor,
              dim : int,
              dtype : Optional[int]) -> Tensor

torch.softmax(self : Tensor,
              dim : str,
              dtype : Optional[int]) -> Tensor

torch.softmax(self : Tensor,
              dim : int,
              dtype : Optional[int],
              out : Tensor) -> Tensor

torch.sort(self : Tensor,
           dim : int=-1,
           descending : bool=False) -> Tuple[Tensor, Tensor]

torch.sort(self : Tensor,
           stable : Optional[bool],
           dim : int=-1,
           descending : bool=False) -> Tuple[Tensor, Tensor]

torch.sort(self : Tensor,
           stable : Optional[bool],
           dim : int=-1,
           descending : bool=False,
           values : Tensor,
           indices : Tensor) -> Tuple[Tensor, Tensor]

torch.sort(self : Tensor,
           dim : int=-1,
           descending : bool=False,
           values : Tensor,
           indices : Tensor) -> Tuple[Tensor, Tensor]

torch.sort(self : Tensor,
           dim : str,
           descending : bool=False) -> Tuple[Tensor, Tensor]

torch.sort(self : Tensor,
           dim : str,
           descending : bool=False,
           values : Tensor,
           indices : Tensor) -> Tuple[Tensor, Tensor]

torch.sort(self : Tensor,
           stable : Optional[bool],
           dim : str,
           descending : bool=False) -> Tuple[Tensor, Tensor]

torch.sort(self : Tensor,
           stable : Optional[bool],
           dim : str,
           descending : bool=False,
           values : Tensor,
           indices : Tensor) -> Tuple[Tensor, Tensor]

torch.sort(self : List[int],
           reverse : bool=False) -> Tuple[]

torch.sort(self : List[float],
           reverse : bool=False) -> Tuple[]

torch.sort(self : List[Tensor],
           reverse : bool=False) -> Tuple[]

torch.sort(self : List[bool],
           reverse : bool=False) -> Tuple[]

torch.sort(self : List[str],
           reverse : bool=False) -> Tuple[]

torch.sort(self : List[t],
           reverse : bool=False) -> Tuple[]

torch.sparse_bsc_tensor(ccol_indices : Tensor,
                        row_indices : Tensor,
                        values : Tensor,
                        size : List[int],
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_bsc_tensor(ccol_indices : Tensor,
                        row_indices : Tensor,
                        values : Tensor,
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_bsr_tensor(crow_indices : Tensor,
                        col_indices : Tensor,
                        values : Tensor,
                        size : List[int],
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_bsr_tensor(crow_indices : Tensor,
                        col_indices : Tensor,
                        values : Tensor,
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_compressed_tensor(compressed_indices : Tensor,
                               plain_indices : Tensor,
                               values : Tensor,
                               size : List[int],
                               dtype : Optional[int],
                               layout : Optional[int],
                               device : Optional[Device],
                               pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_compressed_tensor(compressed_indices : Tensor,
                               plain_indices : Tensor,
                               values : Tensor,
                               dtype : Optional[int],
                               layout : Optional[int],
                               device : Optional[Device],
                               pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_coo_tensor(size : List[int],
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_coo_tensor(indices : Tensor,
                        values : Tensor,
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool],
                        is_coalesced : Optional[bool]) -> Tensor

torch.sparse_coo_tensor(indices : Tensor,
                        values : Tensor,
                        size : List[int],
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool],
                        is_coalesced : Optional[bool]) -> Tensor

torch.sparse_coo_tensor(size : List[int],
                        out : Tensor) -> Tensor

torch.sparse_csc_tensor(ccol_indices : Tensor,
                        row_indices : Tensor,
                        values : Tensor,
                        size : List[int],
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_csc_tensor(ccol_indices : Tensor,
                        row_indices : Tensor,
                        values : Tensor,
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_csr_tensor(crow_indices : Tensor,
                        col_indices : Tensor,
                        values : Tensor,
                        size : List[int],
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_csr_tensor(crow_indices : Tensor,
                        col_indices : Tensor,
                        values : Tensor,
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.split(self : Tensor,
            split_size : int,
            dim : int=0) -> List[Tensor]

torch.split(self : Tensor,
            split_size : List[int],
            dim : int=0) -> List[Tensor]

torch.split(self : str,
            separator : Optional[str],
            max : int=-1) -> List[str]

torch.split(self : Tensor,
            split_sizes : List[int],
            dim : int=0) -> List[Tensor]

torch.split_copy(self : Tensor,
                 split_size : int,
                 dim : int=0) -> List[Tensor]

torch.split_copy(self : Tensor,
                 split_size : int,
                 dim : int=0,
                 out : List[Tensor]) -> Tuple[]

torch.split_with_sizes(self : Tensor,
                       split_sizes : List[int],
                       dim : int=0) -> List[Tensor]

torch.split_with_sizes_copy(self : Tensor,
                            split_sizes : List[int],
                            dim : int=0) -> List[Tensor]

torch.split_with_sizes_copy(self : Tensor,
                            split_sizes : List[int],
                            dim : int=0,
                            out : List[Tensor]) -> Tuple[]

torch.sqrt(self : Tensor) -> Tensor

torch.sqrt(self : Tensor,
           out : Tensor) -> Tensor

torch.sqrt(a : int) -> float

torch.sqrt(a : float) -> float

torch.sqrt(a : complex) -> complex

torch.sqrt(a : number) -> number

torch.sqrt_(self : Tensor) -> Tensor

torch.square(self : Tensor) -> Tensor

torch.square(self : Tensor,
             out : Tensor) -> Tensor

torch.square_(self : Tensor) -> Tensor

torch.squeeze(self : Tensor) -> Tensor

torch.squeeze(self : Tensor,
              dim : int) -> Tensor

torch.squeeze(self : Tensor,
              dim : List[int]) -> Tensor

torch.squeeze(self : Tensor,
              dim : str) -> Tensor

torch.squeeze_copy(self : Tensor) -> Tensor

torch.squeeze_copy(self : Tensor,
                   dim : int) -> Tensor

torch.squeeze_copy(self : Tensor,
                   dim : List[int]) -> Tensor

torch.squeeze_copy(self : Tensor,
                   out : Tensor) -> Tensor

torch.squeeze_copy(self : Tensor,
                   dim : int,
                   out : Tensor) -> Tensor

torch.squeeze_copy(self : Tensor,
                   dim : List[int],
                   out : Tensor) -> Tensor

torch.sspaddmm(self : Tensor,
               mat1 : Tensor,
               mat2 : Tensor,
               beta : number=1,
               alpha : number=1,
               out : Tensor) -> Tensor

torch.sspaddmm(self : Tensor,
               mat1 : Tensor,
               mat2 : Tensor,
               beta : number=1,
               alpha : number=1) -> Tensor

torch.stack(tensors : List[Tensor],
            dim : int=0) -> Tensor

torch.stack(tensors : List[Tensor],
            dim : int=0,
            out : Tensor) -> Tensor

torch.std(self : Tensor,
          unbiased : bool=True) -> Tensor

torch.std(self : Tensor,
          dim : Optional[List[int]],
          unbiased : bool=True,
          keepdim : bool=False) -> Tensor

torch.std(self : Tensor,
          dim : Optional[List[int]],
          correction : Optional[number],
          keepdim : bool=False) -> Tensor

torch.std(self : Tensor,
          dim : List[str],
          unbiased : bool=True,
          keepdim : bool=False) -> Tensor

torch.std(self : Tensor,
          dim : List[str],
          unbiased : bool=True,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.std(self : Tensor,
          dim : Optional[List[int]],
          unbiased : bool=True,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.std(self : Tensor,
          dim : Optional[List[int]],
          correction : Optional[number],
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.std(self : Tensor,
          dim : List[str],
          correction : Optional[number],
          keepdim : bool=False) -> Tensor

torch.std(self : Tensor,
          dim : List[str],
          correction : Optional[number],
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.std_mean(self : Tensor,
               unbiased : bool=True) -> Tuple[Tensor, Tensor]

torch.std_mean(self : Tensor,
               dim : Optional[List[int]],
               unbiased : bool=True,
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.std_mean(self : Tensor,
               dim : Optional[List[int]],
               correction : Optional[number],
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.std_mean(self : Tensor,
               dim : List[str],
               unbiased : bool=True,
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.std_mean(self : Tensor,
               dim : List[str],
               correction : Optional[number],
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.std_mean(self : Tensor,
               dim : Optional[List[int]],
               correction : Optional[number],
               keepdim : bool=False,
               out0 : Tensor,
               out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.sub(self : Tensor,
          other : Tensor,
          alpha : number=1) -> Tensor

torch.sub(self : Tensor,
          other : number,
          alpha : number=1) -> Tensor

torch.sub(self : Tensor,
          other : Tensor,
          alpha : number=1,
          out : Tensor) -> Tensor

torch.sub(self : Tensor,
          other : number,
          alpha : number=1,
          out : Tensor) -> Tensor

torch.sub(a : int,
          b : int) -> int

torch.sub(a : complex,
          b : complex) -> complex

torch.sub(a : float,
          b : float) -> float

torch.sub(a : int,
          b : complex) -> complex

torch.sub(a : complex,
          b : int) -> complex

torch.sub(a : float,
          b : complex) -> complex

torch.sub(a : complex,
          b : float) -> complex

torch.sub(a : int,
          b : float) -> float

torch.sub(a : float,
          b : int) -> float

torch.sub(a : number,
          b : number) -> number

torch.subtract(self : Tensor,
               other : Tensor,
               alpha : number=1) -> Tensor

torch.subtract(self : Tensor,
               other : Tensor,
               alpha : number=1,
               out : Tensor) -> Tensor

torch.subtract(self : Tensor,
               other : number,
               alpha : number=1) -> Tensor

torch.sum(self : Tensor,
          dim : Optional[List[int]],
          keepdim : bool=False,
          dtype : Optional[int]) -> Tensor

torch.sum(self : Tensor,
          dtype : Optional[int]) -> Tensor

torch.sum(self : Tensor,
          dim : List[str],
          keepdim : bool=False,
          dtype : Optional[int]) -> Tensor

torch.sum(self : Tensor,
          dim : List[str],
          keepdim : bool=False,
          dtype : Optional[int],
          out : Tensor) -> Tensor

torch.sum(self : Tensor,
          dim : Optional[List[int]],
          keepdim : bool=False,
          dtype : Optional[int],
          out : Tensor) -> Tensor

torch.sum(self : Tensor,
          dtype : Optional[int],
          out : Tensor) -> Tensor

torch.sum(self : List[int]) -> int

torch.sum(self : List[float]) -> float

torch.sum(self : List[complex]) -> complex

torch.sum(self : List[bool]) -> int

torch.svd(self : Tensor,
          some : bool=True,
          compute_uv : bool=True) -> Tuple[Tensor, Tensor, Tensor]

torch.svd(self : Tensor,
          some : bool=True,
          compute_uv : bool=True,
          U : Tensor,
          S : Tensor,
          V : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch.swapaxes(self : Tensor,
               axis0 : int,
               axis1 : int) -> Tensor

torch.swapdims(self : Tensor,
               dim0 : int,
               dim1 : int) -> Tensor

torch.sym_constrain_range(size : number,
                          min : Optional[int],
                          max : Optional[int]) -> Tuple[]

torch.sym_constrain_range_for_size(size : number,
                                   min : Optional[int],
                                   max : Optional[int]) -> Tuple[]

torch.t(self : Tensor) -> Tensor

torch.t_copy(self : Tensor) -> Tensor

torch.t_copy(self : Tensor,
             out : Tensor) -> Tensor

torch.take(self : Tensor,
           index : Tensor) -> Tensor

torch.take(self : Tensor,
           index : Tensor,
           out : Tensor) -> Tensor

torch.take_along_dim(self : Tensor,
                     indices : Tensor,
                     dim : Optional[int]) -> Tensor

torch.take_along_dim(self : Tensor,
                     indices : Tensor,
                     dim : Optional[int],
                     out : Tensor) -> Tensor

torch.tan(self : Tensor) -> Tensor

torch.tan(self : Tensor,
          out : Tensor) -> Tensor

torch.tan(a : int) -> float

torch.tan(a : float) -> float

torch.tan(a : complex) -> complex

torch.tan(a : number) -> number

torch.tan_(self : Tensor) -> Tensor

torch.tanh(self : Tensor) -> Tensor

torch.tanh(self : Tensor,
           out : Tensor) -> Tensor

torch.tanh(a : int) -> float

torch.tanh(a : float) -> float

torch.tanh(a : complex) -> complex

torch.tanh(a : number) -> number

torch.tanh_(self : Tensor) -> Tensor

torch.tensor(t : bool,
             dtype : Optional[int],
             device : Optional[Device],
             requires_grad : bool=False) -> Tensor

torch.tensor(t : float,
             dtype : Optional[int],
             device : Optional[Device],
             requires_grad : bool=False) -> Tensor

torch.tensor(t : int,
             dtype : Optional[int],
             device : Optional[Device],
             requires_grad : bool=False) -> Tensor

torch.tensor(t : complex,
             dtype : Optional[int],
             device : Optional[Device],
             requires_grad : bool=False) -> Tensor

torch.tensor(data : List[t],
             dtype : Optional[int],
             device : Optional[Device],
             requires_grad : bool=False) -> Tensor

torch.tensor_split(self : Tensor,
                   sections : int,
                   dim : int=0) -> List[Tensor]

torch.tensor_split(self : Tensor,
                   indices : List[int],
                   dim : int=0) -> List[Tensor]

torch.tensor_split(self : Tensor,
                   tensor_indices_or_sections : Tensor,
                   dim : int=0) -> List[Tensor]

torch.threshold(self : Tensor,
                threshold : number,
                value : number) -> Tensor

torch.threshold(self : Tensor,
                threshold : number,
                value : number,
                out : Tensor) -> Tensor

torch.threshold_(self : Tensor,
                 threshold : number,
                 value : number) -> Tensor

torch.tile(self : Tensor,
           dims : List[int]) -> Tensor

torch.topk(self : Tensor,
           k : int,
           dim : int=-1,
           largest : bool=True,
           sorted : bool=True) -> Tuple[Tensor, Tensor]

torch.topk(self : Tensor,
           k : int,
           dim : int=-1,
           largest : bool=True,
           sorted : bool=True,
           values : Tensor,
           indices : Tensor) -> Tuple[Tensor, Tensor]

torch.trace(self : Tensor) -> Tensor

torch.trace(self : Tensor,
            out : Tensor) -> Tensor

torch.transpose(self : Tensor,
                dim0 : int,
                dim1 : int) -> Tensor

torch.transpose(self : Tensor,
                dim0 : str,
                dim1 : str) -> Tensor

torch.transpose_copy(self : Tensor,
                     dim0 : int,
                     dim1 : int) -> Tensor

torch.transpose_copy(self : Tensor,
                     dim0 : int,
                     dim1 : int,
                     out : Tensor) -> Tensor

torch.trapezoid(y : Tensor,
                x : Tensor,
                dim : int=-1) -> Tensor

torch.trapezoid(y : Tensor,
                dx : number=1,
                dim : int=-1) -> Tensor

torch.trapz(y : Tensor,
            x : Tensor,
            dim : int=-1) -> Tensor

torch.trapz(y : Tensor,
            dx : float=1.0,
            dim : int=-1) -> Tensor

torch.triangular_solve(self : Tensor,
                       A : Tensor,
                       upper : bool=True,
                       transpose : bool=False,
                       unitriangular : bool=False) -> Tuple[Tensor, Tensor]

torch.triangular_solve(self : Tensor,
                       A : Tensor,
                       upper : bool=True,
                       transpose : bool=False,
                       unitriangular : bool=False,
                       X : Tensor,
                       M : Tensor) -> Tuple[Tensor, Tensor]

torch.tril(self : Tensor,
           diagonal : int=0) -> Tensor

torch.tril(self : Tensor,
           diagonal : int=0,
           out : Tensor) -> Tensor

torch.tril_indices(row : int,
                   col : int,
                   offset : int=0,
                   dtype : Optional[int]=4,
                   layout : Optional[int],
                   device : Optional[Device],
                   pin_memory : Optional[bool]) -> Tensor

torch.tril_indices(row : int,
                   col : int,
                   offset : int=0,
                   out : Tensor) -> Tensor

torch.triplet_margin_loss(anchor : Tensor,
                          positive : Tensor,
                          negative : Tensor,
                          margin : float=1.0,
                          p : float=2.0,
                          eps : float=1e-06,
                          swap : bool=False,
                          reduction : int=1) -> Tensor

torch.triu(self : Tensor,
           diagonal : int=0) -> Tensor

torch.triu(self : Tensor,
           diagonal : int=0,
           out : Tensor) -> Tensor

torch.triu_indices(row : int,
                   col : int,
                   offset : int=0,
                   dtype : Optional[int]=4,
                   layout : Optional[int],
                   device : Optional[Device],
                   pin_memory : Optional[bool]) -> Tensor

torch.triu_indices(row : int,
                   col : int,
                   offset : int=0,
                   out : Tensor) -> Tensor

torch.true_divide(self : Tensor,
                  other : Tensor) -> Tensor

torch.true_divide(self : Tensor,
                  other : number) -> Tensor

torch.true_divide(self : Tensor,
                  other : Tensor,
                  out : Tensor) -> Tensor

torch.trunc(self : Tensor) -> Tensor

torch.trunc(self : Tensor,
            out : Tensor) -> Tensor

torch.trunc_(self : Tensor) -> Tensor

torch.unbind(self : Tensor,
             dim : int=0) -> List[Tensor]

torch.unbind(self : Tensor,
             dim : str) -> List[Tensor]

torch.unbind_copy(self : Tensor,
                  dim : int=0) -> List[Tensor]

torch.unbind_copy(self : Tensor,
                  dim : int=0,
                  out : List[Tensor]) -> Tuple[]

torch.unflatten(self : Tensor,
                dim : int,
                sizes : List[int]) -> Tensor

torch.unflatten(self : Tensor,
                dim : str,
                sizes : List[int],
                names : List[str]) -> Tensor

torch.unfold_copy(self : Tensor,
                  dimension : int,
                  size : int,
                  step : int) -> Tensor

torch.unfold_copy(self : Tensor,
                  dimension : int,
                  size : int,
                  step : int,
                  out : Tensor) -> Tensor

torch.unsafe_chunk(self : Tensor,
                   chunks : int,
                   dim : int=0) -> List[Tensor]

torch.unsafe_split(self : Tensor,
                   split_size : int,
                   dim : int=0) -> List[Tensor]

torch.unsafe_split(self : Tensor,
                   split_size : int,
                   dim : int=0,
                   out : List[Tensor]) -> Tuple[]

torch.unsafe_split_with_sizes(self : Tensor,
                              split_sizes : List[int],
                              dim : int=0) -> List[Tensor]

torch.unsafe_split_with_sizes(self : Tensor,
                              split_sizes : List[int],
                              dim : int=0,
                              out : List[Tensor]) -> Tuple[]

torch.unsqueeze(self : Tensor,
                dim : int) -> Tensor

torch.unsqueeze_copy(self : Tensor,
                     dim : int) -> Tensor

torch.unsqueeze_copy(self : Tensor,
                     dim : int,
                     out : Tensor) -> Tensor

torch.values_copy(self : Tensor) -> Tensor

torch.values_copy(self : Tensor,
                  out : Tensor) -> Tensor

torch.vander(x : Tensor,
             N : Optional[int],
             increasing : bool=False) -> Tensor

torch.var(self : Tensor,
          unbiased : bool=True) -> Tensor

torch.var(self : Tensor,
          dim : Optional[List[int]],
          unbiased : bool=True,
          keepdim : bool=False) -> Tensor

torch.var(self : Tensor,
          dim : Optional[List[int]],
          correction : Optional[number],
          keepdim : bool=False) -> Tensor

torch.var(self : Tensor,
          dim : List[str],
          unbiased : bool=True,
          keepdim : bool=False) -> Tensor

torch.var(self : Tensor,
          dim : List[str],
          unbiased : bool=True,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.var(self : Tensor,
          dim : Optional[List[int]],
          unbiased : bool=True,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.var(self : Tensor,
          dim : Optional[List[int]],
          correction : Optional[number],
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.var(self : Tensor,
          dim : List[str],
          correction : Optional[number],
          keepdim : bool=False) -> Tensor

torch.var(self : Tensor,
          dim : List[str],
          correction : Optional[number],
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.var_mean(self : Tensor,
               unbiased : bool=True) -> Tuple[Tensor, Tensor]

torch.var_mean(self : Tensor,
               dim : Optional[List[int]],
               unbiased : bool=True,
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.var_mean(self : Tensor,
               dim : Optional[List[int]],
               correction : Optional[number],
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.var_mean(self : Tensor,
               dim : List[str],
               unbiased : bool=True,
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.var_mean(self : Tensor,
               dim : List[str],
               correction : Optional[number],
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.var_mean(self : Tensor,
               dim : Optional[List[int]],
               correction : Optional[number],
               keepdim : bool=False,
               out0 : Tensor,
               out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.vdot(self : Tensor,
           other : Tensor) -> Tensor

torch.vdot(self : Tensor,
           other : Tensor,
           out : Tensor) -> Tensor

torch.view_as_complex(self : Tensor) -> Tensor

torch.view_as_complex_copy(self : Tensor) -> Tensor

torch.view_as_complex_copy(self : Tensor,
                           out : Tensor) -> Tensor

torch.view_as_real(self : Tensor) -> Tensor

torch.view_as_real_copy(self : Tensor) -> Tensor

torch.view_as_real_copy(self : Tensor,
                        out : Tensor) -> Tensor

torch.view_copy(self : Tensor,
                size : List[int]) -> Tensor

torch.view_copy(self : Tensor,
                dtype : int) -> Tensor

torch.view_copy(self : Tensor,
                size : List[int],
                out : Tensor) -> Tensor

torch.view_copy(self : Tensor,
                dtype : int,
                out : Tensor) -> Tensor

torch.vsplit(self : Tensor,
             sections : int) -> List[Tensor]

torch.vsplit(self : Tensor,
             indices : List[int]) -> List[Tensor]

torch.vstack(tensors : List[Tensor]) -> Tensor

torch.vstack(tensors : List[Tensor],
             out : Tensor) -> Tensor

torch.wait(self : Future[t]) -> t

torch.where(condition : Tensor,
            self : Tensor,
            other : Tensor) -> Tensor

torch.where(condition : Tensor,
            self : Tensor,
            other : number) -> Tensor

torch.where(condition : Tensor,
            self : number,
            other : Tensor) -> Tensor

torch.where(condition : Tensor,
            self : number,
            other : number) -> Tensor

torch.where(condition : Tensor) -> List[Tensor]

torch.where(condition : Tensor,
            self : Tensor,
            other : Tensor,
            out : Tensor) -> Tensor

torch.xlogy(self : Tensor,
            other : Tensor) -> Tensor

torch.xlogy(self : Tensor,
            other : number) -> Tensor

torch.xlogy(self : number,
            other : Tensor) -> Tensor

torch.xlogy(self : Tensor,
            other : Tensor,
            out : Tensor) -> Tensor

torch.xlogy(self : number,
            other : Tensor,
            out : Tensor) -> Tensor

torch.xlogy(self : Tensor,
            other : number,
            out : Tensor) -> Tensor

torch.xlogy_(self : Tensor,
             other : Tensor) -> Tensor

torch.xlogy_(self : Tensor,
             other : number) -> Tensor

torch.zero_(self : Tensor) -> Tensor

torch.zeros(size : List[int],
            names : Optional[List[str]],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.zeros(size : List[int],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.zeros(size : List[int],
            names : Optional[List[str]],
            out : Tensor) -> Tensor

torch.zeros(size : List[int],
            out : Tensor) -> Tensor

torch.zeros_like(self : Tensor,
                 dtype : Optional[int],
                 layout : Optional[int],
                 device : Optional[Device],
                 pin_memory : Optional[bool],
                 memory_format : Optional[int]) -> Tensor

torch.zeros_like(self : Tensor,
                 memory_format : Optional[int],
                 out : Tensor) -> Tensor

torch._C._nn.adaptive_avg_pool2d(self : Tensor,
                                 output_size : List[int]) -> Tensor

torch._C._nn.adaptive_avg_pool2d(self : Tensor,
                                 output_size : List[int],
                                 out : Tensor) -> Tensor

torch._C._nn.adaptive_avg_pool3d(self : Tensor,
                                 output_size : List[int]) -> Tensor

torch._C._nn.adaptive_avg_pool3d(self : Tensor,
                                 output_size : List[int],
                                 out : Tensor) -> Tensor

torch._C._nn.adaptive_max_pool2d(self : Tensor,
                                 output_size : List[int]) -> Tuple[Tensor, Tensor]

torch._C._nn.adaptive_max_pool2d(self : Tensor,
                                 output_size : List[int],
                                 out : Tensor,
                                 indices : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.adaptive_max_pool3d(self : Tensor,
                                 output_size : List[int]) -> Tuple[Tensor, Tensor]

torch._C._nn.adaptive_max_pool3d(self : Tensor,
                                 output_size : List[int],
                                 out : Tensor,
                                 indices : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.avg_pool2d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0],
                        ceil_mode : bool=False,
                        count_include_pad : bool=True,
                        divisor_override : Optional[int]) -> Tensor

torch._C._nn.avg_pool2d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0],
                        ceil_mode : bool=False,
                        count_include_pad : bool=True,
                        divisor_override : Optional[int],
                        out : Tensor) -> Tensor

torch._C._nn.avg_pool3d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0, 0],
                        ceil_mode : bool=False,
                        count_include_pad : bool=True,
                        divisor_override : Optional[int]) -> Tensor

torch._C._nn.avg_pool3d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0, 0],
                        ceil_mode : bool=False,
                        count_include_pad : bool=True,
                        divisor_override : Optional[int],
                        out : Tensor) -> Tensor

torch._C._nn.binary_cross_entropy(self : Tensor,
                                  target : Tensor,
                                  weight : Optional[Tensor],
                                  reduction : int=1) -> Tensor

torch._C._nn.binary_cross_entropy(self : Tensor,
                                  target : Tensor,
                                  weight : Optional[Tensor],
                                  reduction : int=1,
                                  out : Tensor) -> Tensor

torch._C._nn.col2im(self : Tensor,
                    output_size : List[int],
                    kernel_size : List[int],
                    dilation : List[int],
                    padding : List[int],
                    stride : List[int]) -> Tensor

torch._C._nn.col2im(self : Tensor,
                    output_size : List[int],
                    kernel_size : List[int],
                    dilation : List[int],
                    padding : List[int],
                    stride : List[int],
                    out : Tensor) -> Tensor

torch._C._nn.conv_depthwise3d(self : Tensor,
                              weight : Tensor,
                              kernel_size : List[int],
                              bias : Optional[Tensor],
                              stride : List[int],
                              padding : List[int],
                              dilation : List[int],
                              out : Tensor) -> Tensor

torch._C._nn.conv_depthwise3d(self : Tensor,
                              weight : Tensor,
                              kernel_size : List[int],
                              bias : Optional[Tensor],
                              stride : List[int],
                              padding : List[int],
                              dilation : List[int]) -> Tensor

torch._C._nn.cross_entropy_loss(self : Tensor,
                                target : Tensor,
                                weight : Optional[Tensor],
                                reduction : int=1,
                                ignore_index : int=-100,
                                label_smoothing : float=0.0) -> Tensor

torch._C._nn.elu(self : Tensor,
                 alpha : number=1,
                 scale : number=1,
                 input_scale : number=1) -> Tensor

torch._C._nn.elu(self : Tensor,
                 alpha : number=1,
                 scale : number=1,
                 input_scale : number=1,
                 out : Tensor) -> Tensor

torch._C._nn.elu_(self : Tensor,
                  alpha : number=1,
                  scale : number=1,
                  input_scale : number=1) -> Tensor

torch._C._nn.flatten_dense_tensors(tensors : List[Tensor]) -> Tensor

torch._C._nn.fractional_max_pool2d(self : Tensor,
                                   kernel_size : List[int],
                                   output_size : List[int],
                                   random_samples : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.fractional_max_pool2d(self : Tensor,
                                   kernel_size : List[int],
                                   output_size : List[int],
                                   random_samples : Tensor,
                                   output : Tensor,
                                   indices : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.fractional_max_pool3d(self : Tensor,
                                   kernel_size : List[int],
                                   output_size : List[int],
                                   random_samples : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.fractional_max_pool3d(self : Tensor,
                                   kernel_size : List[int],
                                   output_size : List[int],
                                   random_samples : Tensor,
                                   output : Tensor,
                                   indices : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.gelu(self : Tensor,
                  approximate : str=none) -> Tensor

torch._C._nn.gelu(self : Tensor,
                  approximate : str=none,
                  out : Tensor) -> Tensor

torch._C._nn.gelu_(self : Tensor,
                   approximate : str=none) -> Tensor

torch._C._nn.glu(self : Tensor,
                 dim : int=-1) -> Tensor

torch._C._nn.glu(self : Tensor,
                 dim : int=-1,
                 out : Tensor) -> Tensor

torch._C._nn.hardsigmoid(self : Tensor) -> Tensor

torch._C._nn.hardsigmoid(self : Tensor,
                         out : Tensor) -> Tensor

torch._C._nn.hardsigmoid_(self : Tensor) -> Tensor

torch._C._nn.hardswish(self : Tensor) -> Tensor

torch._C._nn.hardswish(self : Tensor,
                       out : Tensor) -> Tensor

torch._C._nn.hardswish_(self : Tensor) -> Tensor

torch._C._nn.hardtanh(self : Tensor,
                      min_val : number=-1,
                      max_val : number=1) -> Tensor

torch._C._nn.hardtanh(self : Tensor,
                      min_val : number=-1,
                      max_val : number=1,
                      out : Tensor) -> Tensor

torch._C._nn.hardtanh_(self : Tensor,
                       min_val : number=-1,
                       max_val : number=1) -> Tensor

torch._C._nn.huber_loss(self : Tensor,
                        target : Tensor,
                        reduction : int=1,
                        delta : float=1.0) -> Tensor

torch._C._nn.huber_loss(self : Tensor,
                        target : Tensor,
                        reduction : int=1,
                        delta : float=1.0,
                        out : Tensor) -> Tensor

torch._C._nn.im2col(self : Tensor,
                    kernel_size : List[int],
                    dilation : List[int],
                    padding : List[int],
                    stride : List[int]) -> Tensor

torch._C._nn.im2col(self : Tensor,
                    kernel_size : List[int],
                    dilation : List[int],
                    padding : List[int],
                    stride : List[int],
                    out : Tensor) -> Tensor

torch._C._nn.l1_loss(self : Tensor,
                     target : Tensor,
                     reduction : int=1) -> Tensor

torch._C._nn.leaky_relu(self : Tensor,
                        negative_slope : number=0.01) -> Tensor

torch._C._nn.leaky_relu(self : Tensor,
                        negative_slope : number=0.01,
                        out : Tensor) -> Tensor

torch._C._nn.leaky_relu_(self : Tensor,
                         negative_slope : number=0.01) -> Tensor

torch._C._nn.linear(input : Tensor,
                    weight : Tensor,
                    bias : Optional[Tensor]) -> Tensor

torch._C._nn.linear(input : Tensor,
                    weight : Tensor,
                    bias : Optional[Tensor],
                    out : Tensor) -> Tensor

torch._C._nn.log_sigmoid(self : Tensor) -> Tensor

torch._C._nn.log_sigmoid(self : Tensor,
                         out : Tensor) -> Tensor

torch._C._nn.max_pool2d_with_indices(self : Tensor,
                                     kernel_size : List[int],
                                     stride : List[int]=[],
                                     padding : List[int]=[0, 0],
                                     dilation : List[int]=[1, 1],
                                     ceil_mode : bool=False) -> Tuple[Tensor, Tensor]

torch._C._nn.max_pool2d_with_indices(self : Tensor,
                                     kernel_size : List[int],
                                     stride : List[int]=[],
                                     padding : List[int]=[0, 0],
                                     dilation : List[int]=[1, 1],
                                     ceil_mode : bool=False,
                                     out : Tensor,
                                     indices : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.max_pool3d_with_indices(self : Tensor,
                                     kernel_size : List[int],
                                     stride : List[int]=[],
                                     padding : List[int]=[0, 0, 0],
                                     dilation : List[int]=[1, 1, 1],
                                     ceil_mode : bool=False) -> Tuple[Tensor, Tensor]

torch._C._nn.max_pool3d_with_indices(self : Tensor,
                                     kernel_size : List[int],
                                     stride : List[int]=[],
                                     padding : List[int]=[0, 0, 0],
                                     dilation : List[int]=[1, 1, 1],
                                     ceil_mode : bool=False,
                                     out : Tensor,
                                     indices : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.max_unpool2d(self : Tensor,
                          indices : Tensor,
                          output_size : List[int]) -> Tensor

torch._C._nn.max_unpool2d(self : Tensor,
                          indices : Tensor,
                          output_size : List[int],
                          out : Tensor) -> Tensor

torch._C._nn.max_unpool3d(self : Tensor,
                          indices : Tensor,
                          output_size : List[int],
                          stride : List[int],
                          padding : List[int]) -> Tensor

torch._C._nn.max_unpool3d(self : Tensor,
                          indices : Tensor,
                          output_size : List[int],
                          stride : List[int],
                          padding : List[int],
                          out : Tensor) -> Tensor

torch._C._nn.mish(self : Tensor) -> Tensor

torch._C._nn.mish(self : Tensor,
                  out : Tensor) -> Tensor

torch._C._nn.mish_(self : Tensor) -> Tensor

torch._C._nn.mkldnn_linear(self : Tensor,
                           weight : Tensor,
                           bias : Optional[Tensor],
                           out : Tensor) -> Tensor

torch._C._nn.mkldnn_linear(self : Tensor,
                           weight : Tensor,
                           bias : Optional[Tensor]) -> Tensor

torch._C._nn.mkldnn_reorder_conv2d_weight(self : Tensor,
                                          padding : List[int]=[0, 0],
                                          stride : List[int]=[1, 1],
                                          dilation : List[int]=[1, 1],
                                          groups : int=1,
                                          input_size : Optional[List[int]],
                                          out : Tensor) -> Tensor

torch._C._nn.mkldnn_reorder_conv2d_weight(self : Tensor,
                                          padding : List[int]=[0, 0],
                                          stride : List[int]=[1, 1],
                                          dilation : List[int]=[1, 1],
                                          groups : int=1,
                                          input_size : Optional[List[int]]) -> Tensor

torch._C._nn.mkldnn_reorder_conv3d_weight(self : Tensor,
                                          padding : List[int]=[0, 0, 0],
                                          stride : List[int]=[1, 1, 1],
                                          dilation : List[int]=[1, 1, 1],
                                          groups : int=1,
                                          input_size : Optional[List[int]],
                                          out : Tensor) -> Tensor

torch._C._nn.mkldnn_reorder_conv3d_weight(self : Tensor,
                                          padding : List[int]=[0, 0, 0],
                                          stride : List[int]=[1, 1, 1],
                                          dilation : List[int]=[1, 1, 1],
                                          groups : int=1,
                                          input_size : Optional[List[int]]) -> Tensor

torch._C._nn.mse_loss(self : Tensor,
                      target : Tensor,
                      reduction : int=1) -> Tensor

torch._C._nn.mse_loss(self : Tensor,
                      target : Tensor,
                      reduction : int=1,
                      out : Tensor) -> Tensor

torch._C._nn.multi_margin_loss(self : Tensor,
                               target : Tensor,
                               p : number=1,
                               margin : number=1,
                               weight : Optional[Tensor],
                               reduction : int=1) -> Tensor

torch._C._nn.multi_margin_loss(self : Tensor,
                               target : Tensor,
                               p : number=1,
                               margin : number=1,
                               weight : Optional[Tensor],
                               reduction : int=1,
                               out : Tensor) -> Tensor

torch._C._nn.multilabel_margin_loss(self : Tensor,
                                    target : Tensor,
                                    reduction : int=1) -> Tensor

torch._C._nn.multilabel_margin_loss(self : Tensor,
                                    target : Tensor,
                                    reduction : int=1,
                                    out : Tensor) -> Tensor

torch._C._nn.nll_loss(self : Tensor,
                      target : Tensor,
                      weight : Optional[Tensor],
                      reduction : int=1,
                      ignore_index : int=-100) -> Tensor

torch._C._nn.nll_loss(self : Tensor,
                      target : Tensor,
                      weight : Optional[Tensor],
                      reduction : int=1,
                      ignore_index : int=-100,
                      out : Tensor) -> Tensor

torch._C._nn.nll_loss2d(self : Tensor,
                        target : Tensor,
                        weight : Optional[Tensor],
                        reduction : int=1,
                        ignore_index : int=-100) -> Tensor

torch._C._nn.nll_loss2d(self : Tensor,
                        target : Tensor,
                        weight : Optional[Tensor],
                        reduction : int=1,
                        ignore_index : int=-100,
                        out : Tensor) -> Tensor

torch._C._nn.nll_loss_nd(self : Tensor,
                         target : Tensor,
                         weight : Optional[Tensor],
                         reduction : int=1,
                         ignore_index : int=-100) -> Tensor

torch._C._nn.one_hot(self : Tensor,
                     num_classes : int=-1) -> Tensor

torch._C._nn.pad(self : Tensor,
                 pad : List[int],
                 mode : str=constant,
                 value : Optional[float]) -> Tensor

torch._C._nn.pad_sequence(sequences : List[Tensor],
                          batch_first : bool=False,
                          padding_value : float=0.0,
                          padding_side : str=right) -> Tensor

torch._C._nn.reflection_pad1d(self : Tensor,
                              padding : List[int]) -> Tensor

torch._C._nn.reflection_pad1d(self : Tensor,
                              padding : List[int],
                              out : Tensor) -> Tensor

torch._C._nn.reflection_pad2d(self : Tensor,
                              padding : List[int]) -> Tensor

torch._C._nn.reflection_pad2d(self : Tensor,
                              padding : List[int],
                              out : Tensor) -> Tensor

torch._C._nn.reflection_pad3d(self : Tensor,
                              padding : List[int]) -> Tensor

torch._C._nn.reflection_pad3d(self : Tensor,
                              padding : List[int],
                              out : Tensor) -> Tensor

torch._C._nn.relu6(self : Tensor) -> Tensor

torch._C._nn.relu6_(self : Tensor) -> Tensor

torch._C._nn.replication_pad1d(self : Tensor,
                               padding : List[int]) -> Tensor

torch._C._nn.replication_pad1d(self : Tensor,
                               padding : List[int],
                               out : Tensor) -> Tensor

torch._C._nn.replication_pad2d(self : Tensor,
                               padding : List[int]) -> Tensor

torch._C._nn.replication_pad2d(self : Tensor,
                               padding : List[int],
                               out : Tensor) -> Tensor

torch._C._nn.replication_pad3d(self : Tensor,
                               padding : List[int]) -> Tensor

torch._C._nn.replication_pad3d(self : Tensor,
                               padding : List[int],
                               out : Tensor) -> Tensor

torch._C._nn.rrelu_with_noise(self : Tensor,
                              noise : Tensor,
                              lower : number=0.125,
                              upper : number=0.3333333333333333,
                              training : bool=False,
                              generator : Optional[Generator]) -> Tensor

torch._C._nn.rrelu_with_noise(self : Tensor,
                              noise : Tensor,
                              lower : number=0.125,
                              upper : number=0.3333333333333333,
                              training : bool=False,
                              generator : Optional[Generator],
                              out : Tensor) -> Tensor

torch._C._nn.rrelu_with_noise_(self : Tensor,
                               noise : Tensor,
                               lower : number=0.125,
                               upper : number=0.3333333333333333,
                               training : bool=False,
                               generator : Optional[Generator]) -> Tensor

torch._C._nn.scaled_dot_product_attention(query : Tensor,
                                          key : Tensor,
                                          value : Tensor,
                                          attn_mask : Optional[Tensor],
                                          dropout_p : float=0.0,
                                          is_causal : bool=False,
                                          scale : Optional[float],
                                          enable_gqa : bool=False) -> Tensor

torch._C._nn.silu(self : Tensor) -> Tensor

torch._C._nn.silu(self : Tensor,
                  out : Tensor) -> Tensor

torch._C._nn.silu_(self : Tensor) -> Tensor

torch._C._nn.slow_conv3d(self : Tensor,
                         weight : Tensor,
                         kernel_size : List[int],
                         bias : Optional[Tensor],
                         stride : List[int]=[1, 1, 1],
                         padding : List[int]=[0, 0, 0]) -> Tensor

torch._C._nn.slow_conv3d(self : Tensor,
                         weight : Tensor,
                         kernel_size : List[int],
                         bias : Optional[Tensor],
                         stride : List[int]=[1, 1, 1],
                         padding : List[int]=[0, 0, 0],
                         out : Tensor) -> Tensor

torch._C._nn.slow_conv_dilated2d(self : Tensor,
                                 weight : Tensor,
                                 kernel_size : List[int],
                                 bias : Optional[Tensor],
                                 stride : List[int]=[1, 1],
                                 padding : List[int]=[0, 0],
                                 dilation : List[int]=[1, 1]) -> Tensor

torch._C._nn.slow_conv_dilated2d(self : Tensor,
                                 weight : Tensor,
                                 kernel_size : List[int],
                                 bias : Optional[Tensor],
                                 stride : List[int]=[1, 1],
                                 padding : List[int]=[0, 0],
                                 dilation : List[int]=[1, 1],
                                 out : Tensor) -> Tensor

torch._C._nn.slow_conv_dilated3d(self : Tensor,
                                 weight : Tensor,
                                 kernel_size : List[int],
                                 bias : Optional[Tensor],
                                 stride : List[int]=[1, 1, 1],
                                 padding : List[int]=[0, 0, 0],
                                 dilation : List[int]=[1, 1, 1]) -> Tensor

torch._C._nn.slow_conv_dilated3d(self : Tensor,
                                 weight : Tensor,
                                 kernel_size : List[int],
                                 bias : Optional[Tensor],
                                 stride : List[int]=[1, 1, 1],
                                 padding : List[int]=[0, 0, 0],
                                 dilation : List[int]=[1, 1, 1],
                                 out : Tensor) -> Tensor

torch._C._nn.slow_conv_transpose2d(self : Tensor,
                                   weight : Tensor,
                                   kernel_size : List[int],
                                   bias : Optional[Tensor],
                                   stride : List[int]=[1, 1],
                                   padding : List[int]=[0, 0],
                                   output_padding : List[int]=[0, 0],
                                   dilation : List[int]=[1, 1]) -> Tensor

torch._C._nn.slow_conv_transpose2d(self : Tensor,
                                   weight : Tensor,
                                   kernel_size : List[int],
                                   bias : Optional[Tensor],
                                   stride : List[int]=[1, 1],
                                   padding : List[int]=[0, 0],
                                   output_padding : List[int]=[0, 0],
                                   dilation : List[int]=[1, 1],
                                   out : Tensor) -> Tensor

torch._C._nn.slow_conv_transpose3d(self : Tensor,
                                   weight : Tensor,
                                   kernel_size : List[int],
                                   bias : Optional[Tensor],
                                   stride : List[int]=[1, 1, 1],
                                   padding : List[int]=[0, 0, 0],
                                   output_padding : List[int]=[0, 0, 0],
                                   dilation : List[int]=[1, 1, 1]) -> Tensor

torch._C._nn.slow_conv_transpose3d(self : Tensor,
                                   weight : Tensor,
                                   kernel_size : List[int],
                                   bias : Optional[Tensor],
                                   stride : List[int]=[1, 1, 1],
                                   padding : List[int]=[0, 0, 0],
                                   output_padding : List[int]=[0, 0, 0],
                                   dilation : List[int]=[1, 1, 1],
                                   out : Tensor) -> Tensor

torch._C._nn.smooth_l1_loss(self : Tensor,
                            target : Tensor,
                            reduction : int=1,
                            beta : float=1.0) -> Tensor

torch._C._nn.smooth_l1_loss(self : Tensor,
                            target : Tensor,
                            reduction : int=1,
                            beta : float=1.0,
                            out : Tensor) -> Tensor

torch._C._nn.soft_margin_loss(self : Tensor,
                              target : Tensor,
                              reduction : int=1) -> Tensor

torch._C._nn.soft_margin_loss(self : Tensor,
                              target : Tensor,
                              reduction : int=1,
                              out : Tensor) -> Tensor

torch._C._nn.softplus(self : Tensor,
                      beta : number=1,
                      threshold : number=20) -> Tensor

torch._C._nn.softplus(self : Tensor,
                      beta : number=1,
                      threshold : number=20,
                      out : Tensor) -> Tensor

torch._C._nn.softshrink(self : Tensor,
                        lambd : number=0.5) -> Tensor

torch._C._nn.softshrink(self : Tensor,
                        lambd : number=0.5,
                        out : Tensor) -> Tensor

torch._C._nn.thnn_conv2d(self : Tensor,
                         weight : Tensor,
                         kernel_size : List[int],
                         bias : Optional[Tensor],
                         stride : List[int]=[1, 1],
                         padding : List[int]=[0, 0]) -> Tensor

torch._C._nn.thnn_conv2d(self : Tensor,
                         weight : Tensor,
                         kernel_size : List[int],
                         bias : Optional[Tensor],
                         stride : List[int]=[1, 1],
                         padding : List[int]=[0, 0],
                         out : Tensor) -> Tensor

torch._C._nn.unflatten_dense_tensors(flat : Tensor,
                                     tensors : List[Tensor]) -> List[Tensor]

torch._C._nn.upsample_bicubic2d(self : Tensor,
                                output_size : List[int],
                                align_corners : bool,
                                scales_h : Optional[float],
                                scales_w : Optional[float]) -> Tensor

torch._C._nn.upsample_bicubic2d(input : Tensor,
                                output_size : Optional[List[int]],
                                align_corners : bool,
                                scale_factors : Optional[List[float]]) -> Tensor

torch._C._nn.upsample_bicubic2d(self : Tensor,
                                output_size : List[int],
                                align_corners : bool,
                                scales_h : Optional[float],
                                scales_w : Optional[float],
                                out : Tensor) -> Tensor

torch._C._nn.upsample_bilinear2d(self : Tensor,
                                 output_size : List[int],
                                 align_corners : bool,
                                 scales_h : Optional[float],
                                 scales_w : Optional[float]) -> Tensor

torch._C._nn.upsample_bilinear2d(input : Tensor,
                                 output_size : Optional[List[int]],
                                 align_corners : bool,
                                 scale_factors : Optional[List[float]]) -> Tensor

torch._C._nn.upsample_bilinear2d(self : Tensor,
                                 output_size : List[int],
                                 align_corners : bool,
                                 scales_h : Optional[float],
                                 scales_w : Optional[float],
                                 out : Tensor) -> Tensor

torch._C._nn.upsample_bilinear2d(input : Tensor,
                                 output_size : Optional[List[int]],
                                 align_corners : bool,
                                 scale_factors : Optional[List[float]],
                                 out : Tensor) -> Tensor

torch._C._nn.upsample_linear1d(self : Tensor,
                               output_size : List[int],
                               align_corners : bool,
                               scales : Optional[float]) -> Tensor

torch._C._nn.upsample_linear1d(input : Tensor,
                               output_size : Optional[List[int]],
                               align_corners : bool,
                               scale_factors : Optional[List[float]]) -> Tensor

torch._C._nn.upsample_linear1d(self : Tensor,
                               output_size : List[int],
                               align_corners : bool,
                               scales : Optional[float],
                               out : Tensor) -> Tensor

torch._C._nn.upsample_nearest1d(self : Tensor,
                                output_size : List[int],
                                scales : Optional[float]) -> Tensor

torch._C._nn.upsample_nearest1d(input : Tensor,
                                output_size : Optional[List[int]],
                                scale_factors : Optional[List[float]]) -> Tensor

torch._C._nn.upsample_nearest1d(self : Tensor,
                                output_size : List[int],
                                scales : Optional[float],
                                out : Tensor) -> Tensor

torch._C._nn.upsample_nearest2d(self : Tensor,
                                output_size : List[int],
                                scales_h : Optional[float],
                                scales_w : Optional[float]) -> Tensor

torch._C._nn.upsample_nearest2d(input : Tensor,
                                output_size : Optional[List[int]],
                                scale_factors : Optional[List[float]]) -> Tensor

torch._C._nn.upsample_nearest2d(self : Tensor,
                                output_size : List[int],
                                scales_h : Optional[float],
                                scales_w : Optional[float],
                                out : Tensor) -> Tensor

torch._C._nn.upsample_nearest2d(input : Tensor,
                                output_size : Optional[List[int]],
                                scale_factors : Optional[List[float]],
                                out : Tensor) -> Tensor

torch._C._nn.upsample_nearest3d(self : Tensor,
                                output_size : List[int],
                                scales_d : Optional[float],
                                scales_h : Optional[float],
                                scales_w : Optional[float]) -> Tensor

torch._C._nn.upsample_nearest3d(input : Tensor,
                                output_size : Optional[List[int]],
                                scale_factors : Optional[List[float]]) -> Tensor

torch._C._nn.upsample_nearest3d(self : Tensor,
                                output_size : List[int],
                                scales_d : Optional[float],
                                scales_h : Optional[float],
                                scales_w : Optional[float],
                                out : Tensor) -> Tensor

torch._C._nn.upsample_trilinear3d(self : Tensor,
                                  output_size : List[int],
                                  align_corners : bool,
                                  scales_d : Optional[float],
                                  scales_h : Optional[float],
                                  scales_w : Optional[float]) -> Tensor

torch._C._nn.upsample_trilinear3d(input : Tensor,
                                  output_size : Optional[List[int]],
                                  align_corners : bool,
                                  scale_factors : Optional[List[float]]) -> Tensor

torch._C._nn.upsample_trilinear3d(self : Tensor,
                                  output_size : List[int],
                                  align_corners : bool,
                                  scales_d : Optional[float],
                                  scales_h : Optional[float],
                                  scales_w : Optional[float],
                                  out : Tensor) -> Tensor

torch._C._fft.fft_fft(self : Tensor,
                      n : Optional[int],
                      dim : int=-1,
                      norm : Optional[str]) -> Tensor

torch._C._fft.fft_fft(self : Tensor,
                      n : Optional[int],
                      dim : int=-1,
                      norm : Optional[str],
                      out : Tensor) -> Tensor

torch._C._fft.fft_fft2(self : Tensor,
                       s : Optional[List[int]],
                       dim : List[int]=[-2, -1],
                       norm : Optional[str]) -> Tensor

torch._C._fft.fft_fft2(self : Tensor,
                       s : Optional[List[int]],
                       dim : List[int]=[-2, -1],
                       norm : Optional[str],
                       out : Tensor) -> Tensor

torch._C._fft.fft_fftfreq(n : int,
                          d : float=1.0,
                          dtype : Optional[int],
                          layout : Optional[int],
                          device : Optional[Device],
                          pin_memory : Optional[bool]) -> Tensor

torch._C._fft.fft_fftfreq(n : int,
                          d : float=1.0,
                          out : Tensor) -> Tensor

torch._C._fft.fft_fftn(self : Tensor,
                       s : Optional[List[int]],
                       dim : Optional[List[int]],
                       norm : Optional[str]) -> Tensor

torch._C._fft.fft_fftn(self : Tensor,
                       s : Optional[List[int]],
                       dim : Optional[List[int]],
                       norm : Optional[str],
                       out : Tensor) -> Tensor

torch._C._fft.fft_fftshift(self : Tensor,
                           dim : Optional[List[int]]) -> Tensor

torch._C._fft.fft_hfft(self : Tensor,
                       n : Optional[int],
                       dim : int=-1,
                       norm : Optional[str]) -> Tensor

torch._C._fft.fft_hfft(self : Tensor,
                       n : Optional[int],
                       dim : int=-1,
                       norm : Optional[str],
                       out : Tensor) -> Tensor

torch._C._fft.fft_hfft2(self : Tensor,
                        s : Optional[List[int]],
                        dim : List[int]=[-2, -1],
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_hfft2(self : Tensor,
                        s : Optional[List[int]],
                        dim : List[int]=[-2, -1],
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._fft.fft_hfftn(self : Tensor,
                        s : Optional[List[int]],
                        dim : Optional[List[int]],
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_hfftn(self : Tensor,
                        s : Optional[List[int]],
                        dim : Optional[List[int]],
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._fft.fft_ifft(self : Tensor,
                       n : Optional[int],
                       dim : int=-1,
                       norm : Optional[str]) -> Tensor

torch._C._fft.fft_ifft(self : Tensor,
                       n : Optional[int],
                       dim : int=-1,
                       norm : Optional[str],
                       out : Tensor) -> Tensor

torch._C._fft.fft_ifft2(self : Tensor,
                        s : Optional[List[int]],
                        dim : List[int]=[-2, -1],
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_ifft2(self : Tensor,
                        s : Optional[List[int]],
                        dim : List[int]=[-2, -1],
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._fft.fft_ifftn(self : Tensor,
                        s : Optional[List[int]],
                        dim : Optional[List[int]],
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_ifftn(self : Tensor,
                        s : Optional[List[int]],
                        dim : Optional[List[int]],
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._fft.fft_ifftshift(self : Tensor,
                            dim : Optional[List[int]]) -> Tensor

torch._C._fft.fft_ihfft(self : Tensor,
                        n : Optional[int],
                        dim : int=-1,
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_ihfft(self : Tensor,
                        n : Optional[int],
                        dim : int=-1,
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._fft.fft_ihfft2(self : Tensor,
                         s : Optional[List[int]],
                         dim : List[int]=[-2, -1],
                         norm : Optional[str]) -> Tensor

torch._C._fft.fft_ihfft2(self : Tensor,
                         s : Optional[List[int]],
                         dim : List[int]=[-2, -1],
                         norm : Optional[str],
                         out : Tensor) -> Tensor

torch._C._fft.fft_ihfftn(self : Tensor,
                         s : Optional[List[int]],
                         dim : Optional[List[int]],
                         norm : Optional[str]) -> Tensor

torch._C._fft.fft_ihfftn(self : Tensor,
                         s : Optional[List[int]],
                         dim : Optional[List[int]],
                         norm : Optional[str],
                         out : Tensor) -> Tensor

torch._C._fft.fft_irfft(self : Tensor,
                        n : Optional[int],
                        dim : int=-1,
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_irfft(self : Tensor,
                        n : Optional[int],
                        dim : int=-1,
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._fft.fft_irfft2(self : Tensor,
                         s : Optional[List[int]],
                         dim : List[int]=[-2, -1],
                         norm : Optional[str]) -> Tensor

torch._C._fft.fft_irfft2(self : Tensor,
                         s : Optional[List[int]],
                         dim : List[int]=[-2, -1],
                         norm : Optional[str],
                         out : Tensor) -> Tensor

torch._C._fft.fft_irfftn(self : Tensor,
                         s : Optional[List[int]],
                         dim : Optional[List[int]],
                         norm : Optional[str]) -> Tensor

torch._C._fft.fft_irfftn(self : Tensor,
                         s : Optional[List[int]],
                         dim : Optional[List[int]],
                         norm : Optional[str],
                         out : Tensor) -> Tensor

torch._C._fft.fft_rfft(self : Tensor,
                       n : Optional[int],
                       dim : int=-1,
                       norm : Optional[str]) -> Tensor

torch._C._fft.fft_rfft(self : Tensor,
                       n : Optional[int],
                       dim : int=-1,
                       norm : Optional[str],
                       out : Tensor) -> Tensor

torch._C._fft.fft_rfft2(self : Tensor,
                        s : Optional[List[int]],
                        dim : List[int]=[-2, -1],
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_rfft2(self : Tensor,
                        s : Optional[List[int]],
                        dim : List[int]=[-2, -1],
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._fft.fft_rfftfreq(n : int,
                           d : float=1.0,
                           dtype : Optional[int],
                           layout : Optional[int],
                           device : Optional[Device],
                           pin_memory : Optional[bool]) -> Tensor

torch._C._fft.fft_rfftfreq(n : int,
                           d : float=1.0,
                           out : Tensor) -> Tensor

torch._C._fft.fft_rfftn(self : Tensor,
                        s : Optional[List[int]],
                        dim : Optional[List[int]],
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_rfftn(self : Tensor,
                        s : Optional[List[int]],
                        dim : Optional[List[int]],
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._linalg.linalg_cholesky(self : Tensor,
                                 upper : bool=False) -> Tensor

torch._C._linalg.linalg_cholesky(self : Tensor,
                                 upper : bool=False,
                                 out : Tensor) -> Tensor

torch._C._linalg.linalg_cholesky_ex(self : Tensor,
                                    upper : bool=False,
                                    check_errors : bool=False) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_cholesky_ex(self : Tensor,
                                    upper : bool=False,
                                    check_errors : bool=False,
                                    L : Tensor,
                                    info : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_cond(self : Tensor,
                             p : Optional[number]) -> Tensor

torch._C._linalg.linalg_cond(self : Tensor,
                             p : str) -> Tensor

torch._C._linalg.linalg_cond(self : Tensor,
                             p : Optional[number],
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_cond(self : Tensor,
                             p : str,
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_cross(self : Tensor,
                              other : Tensor,
                              dim : int=-1) -> Tensor

torch._C._linalg.linalg_cross(self : Tensor,
                              other : Tensor,
                              dim : int=-1,
                              out : Tensor) -> Tensor

torch._C._linalg.linalg_det(A : Tensor) -> Tensor

torch._C._linalg.linalg_det(A : Tensor,
                            out : Tensor) -> Tensor

torch._C._linalg.linalg_diagonal(A : Tensor,
                                 offset : int=0,
                                 dim1 : int=-2,
                                 dim2 : int=-1) -> Tensor

torch._C._linalg.linalg_eig(self : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_eig(self : Tensor,
                            eigenvalues : Tensor,
                            eigenvectors : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_eigh(self : Tensor,
                             UPLO : str=L) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_eigh(self : Tensor,
                             UPLO : str=L,
                             eigvals : Tensor,
                             eigvecs : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_eigvals(self : Tensor) -> Tensor

torch._C._linalg.linalg_eigvals(self : Tensor,
                                out : Tensor) -> Tensor

torch._C._linalg.linalg_eigvalsh(self : Tensor,
                                 UPLO : str=L) -> Tensor

torch._C._linalg.linalg_eigvalsh(self : Tensor,
                                 UPLO : str=L,
                                 out : Tensor) -> Tensor

torch._C._linalg.linalg_householder_product(input : Tensor,
                                            tau : Tensor) -> Tensor

torch._C._linalg.linalg_householder_product(input : Tensor,
                                            tau : Tensor,
                                            out : Tensor) -> Tensor

torch._C._linalg.linalg_inv(A : Tensor) -> Tensor

torch._C._linalg.linalg_inv(A : Tensor,
                            out : Tensor) -> Tensor

torch._C._linalg.linalg_inv_ex(A : Tensor,
                               check_errors : bool=False) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_inv_ex(A : Tensor,
                               check_errors : bool=False,
                               inverse : Tensor,
                               info : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_ldl_factor(self : Tensor,
                                   hermitian : bool=False) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_ldl_factor(self : Tensor,
                                   hermitian : bool=False,
                                   LD : Tensor,
                                   pivots : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_ldl_factor_ex(self : Tensor,
                                      hermitian : bool=False,
                                      check_errors : bool=False) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_ldl_factor_ex(self : Tensor,
                                      hermitian : bool=False,
                                      check_errors : bool=False,
                                      LD : Tensor,
                                      pivots : Tensor,
                                      info : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_ldl_solve(LD : Tensor,
                                  pivots : Tensor,
                                  B : Tensor,
                                  hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_ldl_solve(LD : Tensor,
                                  pivots : Tensor,
                                  B : Tensor,
                                  hermitian : bool=False,
                                  out : Tensor) -> Tensor

torch._C._linalg.linalg_lstsq(self : Tensor,
                              b : Tensor,
                              rcond : Optional[float],
                              driver : Optional[str]) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch._C._linalg.linalg_lstsq(self : Tensor,
                              b : Tensor,
                              rcond : Optional[float],
                              driver : Optional[str],
                              solution : Tensor,
                              residuals : Tensor,
                              rank : Tensor,
                              singular_values : Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch._C._linalg.linalg_lu(A : Tensor,
                           pivot : bool=True) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_lu(A : Tensor,
                           pivot : bool=True,
                           P : Tensor,
                           L : Tensor,
                           U : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_lu_factor(A : Tensor,
                                  pivot : bool=True) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_lu_factor(A : Tensor,
                                  pivot : bool=True,
                                  LU : Tensor,
                                  pivots : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_lu_factor_ex(A : Tensor,
                                     pivot : bool=True,
                                     check_errors : bool=False) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_lu_factor_ex(A : Tensor,
                                     pivot : bool=True,
                                     check_errors : bool=False,
                                     LU : Tensor,
                                     pivots : Tensor,
                                     info : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_lu_solve(LU : Tensor,
                                 pivots : Tensor,
                                 B : Tensor,
                                 left : bool=True,
                                 adjoint : bool=False) -> Tensor

torch._C._linalg.linalg_lu_solve(LU : Tensor,
                                 pivots : Tensor,
                                 B : Tensor,
                                 left : bool=True,
                                 adjoint : bool=False,
                                 out : Tensor) -> Tensor

torch._C._linalg.linalg_matmul(self : Tensor,
                               other : Tensor) -> Tensor

torch._C._linalg.linalg_matmul(self : Tensor,
                               other : Tensor,
                               out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_exp(self : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_exp(self : Tensor,
                                   out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_norm(self : Tensor,
                                    ord : number,
                                    dim : List[int]=[-2, -1],
                                    keepdim : bool=False,
                                    dtype : Optional[int]) -> Tensor

torch._C._linalg.linalg_matrix_norm(self : Tensor,
                                    ord : str=fro,
                                    dim : List[int]=[-2, -1],
                                    keepdim : bool=False,
                                    dtype : Optional[int]) -> Tensor

torch._C._linalg.linalg_matrix_norm(self : Tensor,
                                    ord : number,
                                    dim : List[int]=[-2, -1],
                                    keepdim : bool=False,
                                    dtype : Optional[int],
                                    out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_norm(self : Tensor,
                                    ord : str=fro,
                                    dim : List[int]=[-2, -1],
                                    keepdim : bool=False,
                                    dtype : Optional[int],
                                    out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_power(self : Tensor,
                                     n : int) -> Tensor

torch._C._linalg.linalg_matrix_power(self : Tensor,
                                     n : int,
                                     out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_rank(self : Tensor,
                                    tol : float,
                                    hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_matrix_rank(input : Tensor,
                                    tol : Tensor,
                                    hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_matrix_rank(input : Tensor,
                                    atol : Optional[Tensor],
                                    rtol : Optional[Tensor],
                                    hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_matrix_rank(self : Tensor,
                                    atol : Optional[float],
                                    rtol : Optional[float],
                                    hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_matrix_rank(input : Tensor,
                                    atol : Optional[Tensor],
                                    rtol : Optional[Tensor],
                                    hermitian : bool=False,
                                    out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_rank(self : Tensor,
                                    atol : Optional[float],
                                    rtol : Optional[float],
                                    hermitian : bool=False,
                                    out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_rank(self : Tensor,
                                    tol : float,
                                    hermitian : bool=False,
                                    out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_rank(input : Tensor,
                                    tol : Tensor,
                                    hermitian : bool=False,
                                    out : Tensor) -> Tensor

torch._C._linalg.linalg_multi_dot(tensors : List[Tensor]) -> Tensor

torch._C._linalg.linalg_multi_dot(tensors : List[Tensor],
                                  out : Tensor) -> Tensor

torch._C._linalg.linalg_norm(self : Tensor,
                             ord : Optional[number],
                             dim : Optional[List[int]],
                             keepdim : bool=False,
                             dtype : Optional[int]) -> Tensor

torch._C._linalg.linalg_norm(self : Tensor,
                             ord : str,
                             dim : Optional[List[int]],
                             keepdim : bool=False,
                             dtype : Optional[int]) -> Tensor

torch._C._linalg.linalg_norm(self : Tensor,
                             ord : Optional[number],
                             dim : Optional[List[int]],
                             keepdim : bool=False,
                             dtype : Optional[int],
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_norm(self : Tensor,
                             ord : str,
                             dim : Optional[List[int]],
                             keepdim : bool=False,
                             dtype : Optional[int],
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             rcond : float,
                             hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             atol : Optional[float],
                             rtol : Optional[float],
                             hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             atol : Optional[Tensor],
                             rtol : Optional[Tensor],
                             hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             atol : Optional[Tensor],
                             rtol : Optional[Tensor],
                             hermitian : bool=False,
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             atol : Optional[float],
                             rtol : Optional[float],
                             hermitian : bool=False,
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             rcond : float,
                             hermitian : bool=False,
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             rcond : Tensor,
                             hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             rcond : Tensor,
                             hermitian : bool=False,
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_qr(A : Tensor,
                           mode : str=reduced) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_qr(A : Tensor,
                           mode : str=reduced,
                           Q : Tensor,
                           R : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_slogdet(A : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_slogdet(A : Tensor,
                                sign : Tensor,
                                logabsdet : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_solve(A : Tensor,
                              B : Tensor,
                              left : bool=True) -> Tensor

torch._C._linalg.linalg_solve(A : Tensor,
                              B : Tensor,
                              left : bool=True,
                              out : Tensor) -> Tensor

torch._C._linalg.linalg_solve_ex(A : Tensor,
                                 B : Tensor,
                                 left : bool=True,
                                 check_errors : bool=False) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_solve_ex(A : Tensor,
                                 B : Tensor,
                                 left : bool=True,
                                 check_errors : bool=False,
                                 result : Tensor,
                                 info : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_solve_triangular(self : Tensor,
                                         B : Tensor,
                                         upper : bool,
                                         left : bool=True,
                                         unitriangular : bool=False) -> Tensor

torch._C._linalg.linalg_solve_triangular(self : Tensor,
                                         B : Tensor,
                                         upper : bool,
                                         left : bool=True,
                                         unitriangular : bool=False,
                                         out : Tensor) -> Tensor

torch._C._linalg.linalg_svd(A : Tensor,
                            full_matrices : bool=True,
                            driver : Optional[str]) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_svd(A : Tensor,
                            full_matrices : bool=True,
                            driver : Optional[str],
                            U : Tensor,
                            S : Tensor,
                            Vh : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_svdvals(A : Tensor,
                                driver : Optional[str]) -> Tensor

torch._C._linalg.linalg_svdvals(A : Tensor,
                                driver : Optional[str],
                                out : Tensor) -> Tensor

torch._C._linalg.linalg_tensorinv(self : Tensor,
                                  ind : int=2) -> Tensor

torch._C._linalg.linalg_tensorinv(self : Tensor,
                                  ind : int=2,
                                  out : Tensor) -> Tensor

torch._C._linalg.linalg_tensorsolve(self : Tensor,
                                    other : Tensor,
                                    dims : Optional[List[int]]) -> Tensor

torch._C._linalg.linalg_tensorsolve(self : Tensor,
                                    other : Tensor,
                                    dims : Optional[List[int]],
                                    out : Tensor) -> Tensor

torch._C._linalg.linalg_vander(x : Tensor,
                               N : Optional[int]) -> Tensor

torch._C._linalg.linalg_vecdot(x : Tensor,
                               y : Tensor,
                               dim : int=-1) -> Tensor

torch._C._linalg.linalg_vecdot(x : Tensor,
                               y : Tensor,
                               dim : int=-1,
                               out : Tensor) -> Tensor

torch._C._linalg.linalg_vector_norm(self : Tensor,
                                    ord : number=2,
                                    dim : Optional[List[int]],
                                    keepdim : bool=False,
                                    dtype : Optional[int]) -> Tensor

torch._C._linalg.linalg_vector_norm(self : Tensor,
                                    ord : number=2,
                                    dim : Optional[List[int]],
                                    keepdim : bool=False,
                                    dtype : Optional[int],
                                    out : Tensor) -> Tensor

torch._C._nested.nested_to_padded_tensor(self : Tensor,
                                         padding : float,
                                         output_size : Optional[List[int]]) -> Tensor

torch._C._sparse.sparse_sampled_addmm(self : Tensor,
                                      mat1 : Tensor,
                                      mat2 : Tensor,
                                      beta : number=1,
                                      alpha : number=1,
                                      out : Tensor) -> Tensor

torch._C._sparse.sparse_sampled_addmm(self : Tensor,
                                      mat1 : Tensor,
                                      mat2 : Tensor,
                                      beta : number=1,
                                      alpha : number=1) -> Tensor

torch._C._special.special_airy_ai(x : Tensor) -> Tensor

torch._C._special.special_airy_ai(x : Tensor,
                                  out : Tensor) -> Tensor

torch._C._special.special_bessel_j0(self : Tensor) -> Tensor

torch._C._special.special_bessel_j0(self : Tensor,
                                    out : Tensor) -> Tensor

torch._C._special.special_bessel_j1(self : Tensor) -> Tensor

torch._C._special.special_bessel_j1(self : Tensor,
                                    out : Tensor) -> Tensor

torch._C._special.special_bessel_y0(self : Tensor) -> Tensor

torch._C._special.special_bessel_y0(self : Tensor,
                                    out : Tensor) -> Tensor

torch._C._special.special_bessel_y1(self : Tensor) -> Tensor

torch._C._special.special_bessel_y1(self : Tensor,
                                    out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_t(x : Tensor,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_t(x : Tensor,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_t(x : number,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_t(x : number,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_t(x : Tensor,
                                                 n : number) -> Tensor

torch._C._special.special_chebyshev_polynomial_t(x : Tensor,
                                                 n : number,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_u(x : Tensor,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_u(x : Tensor,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_u(x : number,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_u(x : number,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_u(x : Tensor,
                                                 n : number) -> Tensor

torch._C._special.special_chebyshev_polynomial_u(x : Tensor,
                                                 n : number,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_v(x : Tensor,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_v(x : Tensor,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_v(x : number,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_v(x : number,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_v(x : Tensor,
                                                 n : number) -> Tensor

torch._C._special.special_chebyshev_polynomial_v(x : Tensor,
                                                 n : number,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_w(x : Tensor,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_w(x : Tensor,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_w(x : number,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_w(x : number,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_w(x : Tensor,
                                                 n : number) -> Tensor

torch._C._special.special_chebyshev_polynomial_w(x : Tensor,
                                                 n : number,
                                                 out : Tensor) -> Tensor

torch._C._special.special_digamma(self : Tensor) -> Tensor

torch._C._special.special_digamma(self : Tensor,
                                  out : Tensor) -> Tensor

torch._C._special.special_entr(self : Tensor) -> Tensor

torch._C._special.special_entr(self : Tensor,
                               out : Tensor) -> Tensor

torch._C._special.special_erf(self : Tensor) -> Tensor

torch._C._special.special_erf(self : Tensor,
                              out : Tensor) -> Tensor

torch._C._special.special_erfc(self : Tensor) -> Tensor

torch._C._special.special_erfc(self : Tensor,
                               out : Tensor) -> Tensor

torch._C._special.special_erfcx(self : Tensor) -> Tensor

torch._C._special.special_erfcx(self : Tensor,
                                out : Tensor) -> Tensor

torch._C._special.special_erfinv(self : Tensor) -> Tensor

torch._C._special.special_erfinv(self : Tensor,
                                 out : Tensor) -> Tensor

torch._C._special.special_exp2(self : Tensor) -> Tensor

torch._C._special.special_exp2(self : Tensor,
                               out : Tensor) -> Tensor

torch._C._special.special_expit(self : Tensor) -> Tensor

torch._C._special.special_expit(self : Tensor,
                                out : Tensor) -> Tensor

torch._C._special.special_expm1(self : Tensor) -> Tensor

torch._C._special.special_expm1(self : Tensor,
                                out : Tensor) -> Tensor

torch._C._special.special_gammainc(self : Tensor,
                                   other : Tensor) -> Tensor

torch._C._special.special_gammainc(self : Tensor,
                                   other : Tensor,
                                   out : Tensor) -> Tensor

torch._C._special.special_gammaincc(self : Tensor,
                                    other : Tensor) -> Tensor

torch._C._special.special_gammaincc(self : Tensor,
                                    other : Tensor,
                                    out : Tensor) -> Tensor

torch._C._special.special_gammaln(self : Tensor) -> Tensor

torch._C._special.special_gammaln(self : Tensor,
                                  out : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_h(x : Tensor,
                                               n : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_h(x : Tensor,
                                               n : Tensor,
                                               out : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_h(x : number,
                                               n : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_h(x : number,
                                               n : Tensor,
                                               out : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_h(x : Tensor,
                                               n : number) -> Tensor

torch._C._special.special_hermite_polynomial_h(x : Tensor,
                                               n : number,
                                               out : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_he(x : Tensor,
                                                n : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_he(x : Tensor,
                                                n : Tensor,
                                                out : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_he(x : number,
                                                n : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_he(x : number,
                                                n : Tensor,
                                                out : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_he(x : Tensor,
                                                n : number) -> Tensor

torch._C._special.special_hermite_polynomial_he(x : Tensor,
                                                n : number,
                                                out : Tensor) -> Tensor

torch._C._special.special_i0(self : Tensor) -> Tensor

torch._C._special.special_i0(self : Tensor,
                             out : Tensor) -> Tensor

torch._C._special.special_i0e(self : Tensor) -> Tensor

torch._C._special.special_i0e(self : Tensor,
                              out : Tensor) -> Tensor

torch._C._special.special_i1(self : Tensor) -> Tensor

torch._C._special.special_i1(self : Tensor,
                             out : Tensor) -> Tensor

torch._C._special.special_i1e(self : Tensor) -> Tensor

torch._C._special.special_i1e(self : Tensor,
                              out : Tensor) -> Tensor

torch._C._special.special_laguerre_polynomial_l(x : Tensor,
                                                n : Tensor) -> Tensor

torch._C._special.special_laguerre_polynomial_l(x : Tensor,
                                                n : Tensor,
                                                out : Tensor) -> Tensor

torch._C._special.special_laguerre_polynomial_l(x : number,
                                                n : Tensor) -> Tensor

torch._C._special.special_laguerre_polynomial_l(x : number,
                                                n : Tensor,
                                                out : Tensor) -> Tensor

torch._C._special.special_laguerre_polynomial_l(x : Tensor,
                                                n : number) -> Tensor

torch._C._special.special_laguerre_polynomial_l(x : Tensor,
                                                n : number,
                                                out : Tensor) -> Tensor

torch._C._special.special_legendre_polynomial_p(x : Tensor,
                                                n : Tensor) -> Tensor

torch._C._special.special_legendre_polynomial_p(x : Tensor,
                                                n : Tensor,
                                                out : Tensor) -> Tensor

torch._C._special.special_legendre_polynomial_p(x : number,
                                                n : Tensor) -> Tensor

torch._C._special.special_legendre_polynomial_p(x : number,
                                                n : Tensor,
                                                out : Tensor) -> Tensor

torch._C._special.special_legendre_polynomial_p(x : Tensor,
                                                n : number) -> Tensor

torch._C._special.special_legendre_polynomial_p(x : Tensor,
                                                n : number,
                                                out : Tensor) -> Tensor

torch._C._special.special_log1p(self : Tensor) -> Tensor

torch._C._special.special_log1p(self : Tensor,
                                out : Tensor) -> Tensor

torch._C._special.special_log_ndtr(self : Tensor) -> Tensor

torch._C._special.special_log_ndtr(self : Tensor,
                                   out : Tensor) -> Tensor

torch._C._special.special_log_softmax(self : Tensor,
                                      dim : int,
                                      dtype : Optional[int]) -> Tensor

torch._C._special.special_logit(self : Tensor,
                                eps : Optional[float]) -> Tensor

torch._C._special.special_logit(self : Tensor,
                                eps : Optional[float],
                                out : Tensor) -> Tensor

torch._C._special.special_logsumexp(self : Tensor,
                                    dim : List[int],
                                    keepdim : bool=False) -> Tensor

torch._C._special.special_logsumexp(self : Tensor,
                                    dim : List[int],
                                    keepdim : bool=False,
                                    out : Tensor) -> Tensor

torch._C._special.special_modified_bessel_i0(self : Tensor) -> Tensor

torch._C._special.special_modified_bessel_i0(self : Tensor,
                                             out : Tensor) -> Tensor

torch._C._special.special_modified_bessel_i1(self : Tensor) -> Tensor

torch._C._special.special_modified_bessel_i1(self : Tensor,
                                             out : Tensor) -> Tensor

torch._C._special.special_modified_bessel_k0(self : Tensor) -> Tensor

torch._C._special.special_modified_bessel_k0(self : Tensor,
                                             out : Tensor) -> Tensor

torch._C._special.special_modified_bessel_k1(self : Tensor) -> Tensor

torch._C._special.special_modified_bessel_k1(self : Tensor,
                                             out : Tensor) -> Tensor

torch._C._special.special_multigammaln(self : Tensor,
                                       p : int) -> Tensor

torch._C._special.special_multigammaln(self : Tensor,
                                       p : int,
                                       out : Tensor) -> Tensor

torch._C._special.special_ndtr(self : Tensor) -> Tensor

torch._C._special.special_ndtr(self : Tensor,
                               out : Tensor) -> Tensor

torch._C._special.special_ndtri(self : Tensor) -> Tensor

torch._C._special.special_ndtri(self : Tensor,
                                out : Tensor) -> Tensor

torch._C._special.special_polygamma(n : int,
                                    self : Tensor) -> Tensor

torch._C._special.special_polygamma(n : int,
                                    self : Tensor,
                                    out : Tensor) -> Tensor

torch._C._special.special_psi(self : Tensor) -> Tensor

torch._C._special.special_psi(self : Tensor,
                              out : Tensor) -> Tensor

torch._C._special.special_round(self : Tensor,
                                decimals : int=0) -> Tensor

torch._C._special.special_round(self : Tensor,
                                decimals : int=0,
                                out : Tensor) -> Tensor

torch._C._special.special_scaled_modified_bessel_k0(x : Tensor) -> Tensor

torch._C._special.special_scaled_modified_bessel_k0(x : Tensor,
                                                    out : Tensor) -> Tensor

torch._C._special.special_scaled_modified_bessel_k1(x : Tensor) -> Tensor

torch._C._special.special_scaled_modified_bessel_k1(x : Tensor,
                                                    out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_t(x : Tensor,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_t(x : Tensor,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_t(x : number,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_t(x : number,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_t(x : Tensor,
                                                         n : number) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_t(x : Tensor,
                                                         n : number,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_u(x : Tensor,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_u(x : Tensor,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_u(x : number,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_u(x : number,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_u(x : Tensor,
                                                         n : number) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_u(x : Tensor,
                                                         n : number,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_v(x : Tensor,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_v(x : Tensor,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_v(x : number,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_v(x : number,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_v(x : Tensor,
                                                         n : number) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_v(x : Tensor,
                                                         n : number,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_w(x : Tensor,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_w(x : Tensor,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_w(x : number,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_w(x : number,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_w(x : Tensor,
                                                         n : number) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_w(x : Tensor,
                                                         n : number,
                                                         out : Tensor) -> Tensor

torch._C._special.special_sinc(self : Tensor) -> Tensor

torch._C._special.special_sinc(self : Tensor,
                               out : Tensor) -> Tensor

torch._C._special.special_softmax(self : Tensor,
                                  dim : int,
                                  dtype : Optional[int]) -> Tensor

torch._C._special.special_spherical_bessel_j0(x : Tensor) -> Tensor

torch._C._special.special_spherical_bessel_j0(x : Tensor,
                                              out : Tensor) -> Tensor

torch._C._special.special_xlog1py(self : Tensor,
                                  other : Tensor) -> Tensor

torch._C._special.special_xlog1py(self : Tensor,
                                  other : number) -> Tensor

torch._C._special.special_xlog1py(self : number,
                                  other : Tensor) -> Tensor

torch._C._special.special_xlog1py(self : Tensor,
                                  other : Tensor,
                                  out : Tensor) -> Tensor

torch._C._special.special_xlog1py(self : number,
                                  other : Tensor,
                                  out : Tensor) -> Tensor

torch._C._special.special_xlog1py(self : Tensor,
                                  other : number,
                                  out : Tensor) -> Tensor

torch._C._special.special_xlogy(self : Tensor,
                                other : Tensor) -> Tensor

torch._C._special.special_xlogy(self : Tensor,
                                other : number) -> Tensor

torch._C._special.special_xlogy(self : number,
                                other : Tensor) -> Tensor

torch._C._special.special_xlogy(self : Tensor,
                                other : Tensor,
                                out : Tensor) -> Tensor

torch._C._special.special_xlogy(self : number,
                                other : Tensor,
                                out : Tensor) -> Tensor

torch._C._special.special_xlogy(self : Tensor,
                                other : number,
                                out : Tensor) -> Tensor

torch._C._special.special_zeta(self : Tensor,
                               other : Tensor) -> Tensor

torch._C._special.special_zeta(self : Tensor,
                               other : number) -> Tensor

torch._C._special.special_zeta(self : number,
                               other : Tensor) -> Tensor

torch._C._special.special_zeta(self : Tensor,
                               other : Tensor,
                               out : Tensor) -> Tensor

torch._C._special.special_zeta(self : number,
                               other : Tensor,
                               out : Tensor) -> Tensor

torch._C._special.special_zeta(self : Tensor,
                               other : number,
                               out : Tensor) -> Tensor

TorchScript 内建函数

collections.OrderedDict() -> Dict[str, Tensor]

collections.OrderedDict(inputs : List[Tuple[str, tVal]]) -> Dict[str, tVal]

collections.OrderedDict(self : Dict[str, t]) -> Dict[str, t]

collections.OrderedDict(inputs : List[Tuple[int, tVal]]) -> Dict[int, tVal]

collections.OrderedDict(self : Dict[int, t]) -> Dict[int, t]

collections.OrderedDict(inputs : List[Tuple[bool, tVal]]) -> Dict[bool, tVal]

collections.OrderedDict(self : Dict[bool, t]) -> Dict[bool, t]

collections.OrderedDict(inputs : List[Tuple[float, tVal]]) -> Dict[float, tVal]

collections.OrderedDict(self : Dict[float, t]) -> Dict[float, t]

collections.OrderedDict(inputs : List[Tuple[complex, tVal]]) -> Dict[complex, tVal]

collections.OrderedDict(self : Dict[complex, t]) -> Dict[complex, t]

collections.OrderedDict(inputs : List[Tuple[Tensor, tVal]]) -> Dict[Tensor, tVal]

collections.OrderedDict(self : Dict[Tensor, t]) -> Dict[Tensor, t]

builtins.dict() -> Dict[str, Tensor]

builtins.dict(inputs : List[Tuple[str, tVal]]) -> Dict[str, tVal]

builtins.dict(self : Dict[str, t]) -> Dict[str, t]

builtins.dict(inputs : List[Tuple[int, tVal]]) -> Dict[int, tVal]

builtins.dict(self : Dict[int, t]) -> Dict[int, t]

builtins.dict(inputs : List[Tuple[bool, tVal]]) -> Dict[bool, tVal]

builtins.dict(self : Dict[bool, t]) -> Dict[bool, t]

builtins.dict(inputs : List[Tuple[float, tVal]]) -> Dict[float, tVal]

builtins.dict(self : Dict[float, t]) -> Dict[float, t]

builtins.dict(inputs : List[Tuple[complex, tVal]]) -> Dict[complex, tVal]

builtins.dict(self : Dict[complex, t]) -> Dict[complex, t]

builtins.dict(inputs : List[Tuple[Tensor, tVal]]) -> Dict[Tensor, tVal]

builtins.dict(self : Dict[Tensor, t]) -> Dict[Tensor, t]

torch.backends.cudnn.is_acceptable(self : Tensor) -> bool

cmath.isnan(self : Tensor) -> Tensor

cmath.isnan(self : Tensor,
            out : Tensor) -> Tensor

cmath.isnan(a : float) -> bool

cmath.isnan(a : complex) -> bool

cmath.isfinite(self : Tensor) -> Tensor

cmath.isfinite(a : float) -> bool

cmath.isfinite(a : complex) -> bool

cmath.isinf(self : Tensor) -> Tensor

cmath.isinf(self : Tensor,
            out : Tensor) -> Tensor

cmath.isinf(a : float) -> bool

cmath.isinf(a : complex) -> bool

cmath.phase(self : Tensor) -> Tensor

cmath.phase(self : Tensor,
            out : Tensor) -> Tensor

cmath.phase(a : int) -> float

cmath.phase(a : float) -> float

cmath.phase(a : complex) -> float

cmath.phase(a : number) -> number

cmath.rect(abs : Tensor,
           angle : Tensor) -> Tensor

cmath.rect(abs : Tensor,
           angle : Tensor,
           out : Tensor) -> Tensor

cmath.rect(a : int,
           b : int) -> complex

cmath.rect(a : float,
           b : float) -> complex

cmath.rect(a : int,
           b : float) -> complex

cmath.rect(a : float,
           b : int) -> complex

cmath.rect(a : number,
           b : number) -> number

cmath.log(self : Tensor) -> Tensor

cmath.log(self : Tensor,
          out : Tensor) -> Tensor

cmath.log(a : int) -> float

cmath.log(a : float) -> float

cmath.log(a : complex) -> complex

cmath.log(a : number) -> number

cmath.log(a : int,
          b : int) -> float

cmath.log(a : float,
          b : float) -> float

cmath.log(a : complex,
          b : complex) -> complex

cmath.log(a : int,
          b : float) -> float

cmath.log(a : float,
          b : int) -> float

cmath.log(a : int,
          b : complex) -> complex

cmath.log(a : complex,
          b : int) -> complex

cmath.log(a : float,
          b : complex) -> complex

cmath.log(a : complex,
          b : float) -> complex

cmath.log(a : number,
          b : number) -> float

cmath.log10(self : Tensor) -> Tensor

cmath.log10(self : Tensor,
            out : Tensor) -> Tensor

cmath.log10(a : int) -> float

cmath.log10(a : float) -> float

cmath.log10(a : complex) -> complex

cmath.log10(a : number) -> number

cmath.sqrt(self : Tensor) -> Tensor

cmath.sqrt(self : Tensor,
           out : Tensor) -> Tensor

cmath.sqrt(a : int) -> float

cmath.sqrt(a : float) -> float

cmath.sqrt(a : complex) -> complex

cmath.sqrt(a : number) -> number

cmath.exp(self : Tensor) -> Tensor

cmath.exp(self : Tensor,
          out : Tensor) -> Tensor

cmath.exp(a : int) -> float

cmath.exp(a : float) -> float

cmath.exp(a : complex) -> complex

cmath.exp(a : number) -> number

cmath.sin(self : Tensor) -> Tensor

cmath.sin(self : Tensor,
          out : Tensor) -> Tensor

cmath.sin(a : int) -> float

cmath.sin(a : float) -> float

cmath.sin(a : complex) -> complex

cmath.sin(a : number) -> number

cmath.tan(self : Tensor) -> Tensor

cmath.tan(self : Tensor,
          out : Tensor) -> Tensor

cmath.tan(a : int) -> float

cmath.tan(a : float) -> float

cmath.tan(a : complex) -> complex

cmath.tan(a : number) -> number

cmath.cos(self : Tensor) -> Tensor

cmath.cos(self : Tensor,
          out : Tensor) -> Tensor

cmath.cos(a : int) -> float

cmath.cos(a : float) -> float

cmath.cos(a : complex) -> complex

cmath.cos(a : number) -> number

cmath.asin(self : Tensor) -> Tensor

cmath.asin(self : Tensor,
           out : Tensor) -> Tensor

cmath.asin(a : int) -> float

cmath.asin(a : float) -> float

cmath.asin(a : complex) -> complex

cmath.asin(a : number) -> number

cmath.acos(self : Tensor) -> Tensor

cmath.acos(self : Tensor,
           out : Tensor) -> Tensor

cmath.acos(a : int) -> float

cmath.acos(a : float) -> float

cmath.acos(a : complex) -> complex

cmath.acos(a : number) -> number

cmath.atan(self : Tensor) -> Tensor

cmath.atan(self : Tensor,
           out : Tensor) -> Tensor

cmath.atan(a : int) -> float

cmath.atan(a : float) -> float

cmath.atan(a : complex) -> complex

cmath.atan(a : number) -> number

cmath.sinh(self : Tensor) -> Tensor

cmath.sinh(self : Tensor,
           out : Tensor) -> Tensor

cmath.sinh(a : int) -> float

cmath.sinh(a : float) -> float

cmath.sinh(a : complex) -> complex

cmath.sinh(a : number) -> number

cmath.cosh(self : Tensor) -> Tensor

cmath.cosh(self : Tensor,
           out : Tensor) -> Tensor

cmath.cosh(a : int) -> float

cmath.cosh(a : float) -> float

cmath.cosh(a : complex) -> complex

cmath.cosh(a : number) -> number

cmath.tanh(self : Tensor) -> Tensor

cmath.tanh(self : Tensor,
           out : Tensor) -> Tensor

cmath.tanh(a : int) -> float

cmath.tanh(a : float) -> float

cmath.tanh(a : complex) -> complex

cmath.tanh(a : number) -> number

cmath.asinh(self : Tensor) -> Tensor

cmath.asinh(self : Tensor,
            out : Tensor) -> Tensor

cmath.asinh(a : int) -> float

cmath.asinh(a : float) -> float

cmath.asinh(a : complex) -> complex

cmath.asinh(a : number) -> number

cmath.acosh(self : Tensor) -> Tensor

cmath.acosh(self : Tensor,
            out : Tensor) -> Tensor

cmath.acosh(a : int) -> float

cmath.acosh(a : float) -> float

cmath.acosh(a : complex) -> complex

cmath.acosh(a : number) -> number

cmath.atanh(self : Tensor) -> Tensor

cmath.atanh(self : Tensor,
            out : Tensor) -> Tensor

cmath.atanh(a : int) -> float

cmath.atanh(a : float) -> float

cmath.atanh(a : complex) -> complex

cmath.atanh(a : number) -> number

torch.autograd.grad(outputs : List[Tensor],
                    inputs : List[Tensor],
                    grad_outputs : Optional[List[Optional[Tensor]]],
                    retain_graph : Optional[bool],
                    create_graph : bool=False,
                    allow_unused : bool=False) -> List[Optional[Tensor]]

torch.autograd.backward(self : Tensor,
                        gradient : Optional[Tensor],
                        retain_graph : Optional[bool],
                        create_graph : bool=False) -> Tuple[]

torch.autograd.backward(tensors : List[Tensor],
                        grad_tensors : Optional[List[Optional[Tensor]]],
                        retain_graph : Optional[bool],
                        create_graph : bool=False) -> Tuple[]

torch.Size(sizes : List[int]) -> List[int]

torch.functional.align_tensors(tensors : List[Tensor]) -> List[Tensor]

torch.functional.atleast_1d(self : Tensor) -> Tensor

torch.functional.atleast_1d(tensors : List[Tensor]) -> List[Tensor]

torch.functional.atleast_2d(self : Tensor) -> Tensor

torch.functional.atleast_2d(tensors : List[Tensor]) -> List[Tensor]

torch.functional.atleast_3d(self : Tensor) -> Tensor

torch.functional.atleast_3d(tensors : List[Tensor]) -> List[Tensor]

torch.functional.block_diag(tensors : List[Tensor]) -> Tensor

torch.functional.block_diag(tensors : List[Tensor],
                            out : Tensor) -> Tensor

torch.functional.broadcast_tensors(tensors : List[Tensor]) -> List[Tensor]

torch.functional.cartesian_prod(tensors : List[Tensor]) -> Tensor

torch.functional.chain_matmul(matrices : List[Tensor]) -> Tensor

torch.functional.chain_matmul(matrices : List[Tensor],
                              out : Tensor) -> Tensor

torch.device(a : str) -> Device

torch.device(type : str,
             index : int) -> Device

torch.functional.einsum(equation : str,
                        tensors : List[Tensor],
                        path : Optional[List[int]]) -> Tensor

torch.functional.einsum(a : Tensor) -> Tensor

torch.get_autocast_dtype(device_type : str) -> int

torch.random.initial_seed(self : Generator) -> int

torch.is_autocast_cpu_enabled() -> bool

torch.is_autocast_enabled() -> bool

torch.is_grad_enabled() -> bool

torch.random.manual_seed(seed : int) -> Tuple[]

torch.random.manual_seed(self : Generator,
                         seed : int) -> Generator

torch.functional.meshgrid(tensors : List[Tensor]) -> List[Tensor]

torch.functional.meshgrid(tensors : List[Tensor],
                          indexing : str) -> List[Tensor]

torch.qscheme(self : Tensor) -> QScheme

torch.serialization.save(item : t,
                         filename : str) -> Tuple[]

torch.random.seed(self : Generator) -> int

torch.autograd.grad_mode.set_grad_enabled(val : bool) -> Tuple[]

torch.functional.split(self : Tensor,
                       split_size : int,
                       dim : int=0) -> List[Tensor]

torch.functional.split(self : Tensor,
                       split_size : List[int],
                       dim : int=0) -> List[Tensor]

torch.functional.split(self : str,
                       separator : Optional[str],
                       max : int=-1) -> List[str]

torch.functional.split(self : Tensor,
                       split_sizes : List[int],
                       dim : int=0) -> List[Tensor]

torch.wait(self : Future[t]) -> t

Python 内建函数

下表中的函数受支持,但没有静态 schema

函数

注意

print

打印任何值

tuple

列表不能用此方法转换为元组,因为其大小非静态已知

getattr

属性名必须是字符串常量

hasattr

属性名必须是字符串常量

isinstance

结果为静态

range

只能在 for 循环中用作迭代器

zip

参数必须是可迭代对象。详细信息请参阅 可迭代对象

enumerate

参数必须是可迭代对象。详细信息请参阅 可迭代对象

以下函数将在 TorchScript 类上使用相应的魔术方法

函数

魔术方法

complex

__complex__

float

__float__

int

__int__

bool

__bool__

str

__str__

len

__len__

hex

__hex__

oct

__oct__

这些内建函数使用 schema

float(a : Tensor) -> float
float(a : number) -> float
float(a : int) -> float
float(a : bool) -> float
float(a : str) -> float

complex(a : number) -> complex
complex(a : Tensor,
        b : Tensor) -> complex
complex(x : int,
        y : bool) -> complex
complex(x : bool,
        y : int) -> complex
complex(x : float,
        y : bool) -> complex
complex(x : bool,
        y : float) -> complex
complex(x : float,
        y : int) -> complex
complex(x : int,
        y : float) -> complex
complex(x : int,
        y : int) -> complex
complex(x : bool,
        y : bool) -> complex
complex(x : float,
        y : float) -> complex
complex(x : Tensor,
        y : float) -> complex
complex(x : float,
        y : Tensor) -> complex
complex(x : Tensor,
        y : int) -> complex
complex(x : int,
        y : Tensor) -> complex
complex(x : Tensor,
        y : bool) -> complex
complex(x : bool,
        y : Tensor) -> complex

int(a : Tensor) -> int
int(a : bool) -> int
int(a : float) -> int
int(a : number) -> int
int(a : str) -> int

bool(a : Tensor) -> bool
bool(a : int) -> bool
bool(a : float) -> bool

str(elem : t) -> str

len(a : List[t]) -> int
len(t : Tensor) -> int
len(s : str) -> int
len(self : Dict[str, t]) -> int
len(self : Dict[int, t]) -> int
len(self : Dict[bool, t]) -> int
len(self : Dict[float, t]) -> int
len(self : Dict[complex, t]) -> int
len(self : Dict[Tensor, t]) -> int
len(a : List[Any]) -> int

hex(i : int) -> str

oct(i : int) -> str

round(self : Tensor) -> Tensor
round(self : Tensor,
      decimals : int) -> Tensor
round(self : Tensor,
      out : Tensor) -> Tensor
round(self : Tensor,
      decimals : int,
      out : Tensor) -> Tensor
round(a : int) -> float
round(a : float) -> float
round(a : number) -> number

hash(value : t) -> int

min(a : int,
    b : int) -> int
min(a : float,
    b : float) -> float
min(a : int,
    b : float) -> float
min(a : float,
    b : int) -> float
min(a : number,
    b : number) -> number
min(l : List[int],
    r : List[int]) -> List[int]
min(self : List[int]) -> int
min(l : List[float],
    r : List[float]) -> List[float]
min(self : List[float]) -> float
min(l : List[bool],
    r : List[bool]) -> List[bool]
min(self : List[bool]) -> bool

max(a : int,
    b : int) -> int
max(a : float,
    b : float) -> float
max(a : int,
    b : float) -> float
max(a : float,
    b : int) -> float
max(a : number,
    b : number) -> number
max(l : List[int],
    r : List[int]) -> List[int]
max(self : List[int]) -> int
max(l : List[float],
    r : List[float]) -> List[float]
max(self : List[float]) -> float
max(l : List[bool],
    r : List[bool]) -> List[bool]
max(self : List[bool]) -> bool

abs(a : int) -> int
abs(a : float) -> float
abs(a : complex) -> float
abs(a : number) -> number
abs(x : Tensor) -> Tensor

all(self : Tensor) -> Tensor
all(self : Tensor,
    dim : int,
    keepdim : bool=False) -> Tensor
all(self : Tensor,
    dim : Optional[List[int]],
    keepdim : bool=False) -> Tensor
all(self : Tensor,
    dim : int,
    keepdim : bool=False,
    out : Tensor) -> Tensor
all(self : Tensor,
    dim : Optional[List[int]],
    keepdim : bool=False,
    out : Tensor) -> Tensor
all(self : Tensor,
    out : Tensor) -> Tensor
all(self : Tensor,
    dim : str,
    keepdim : bool=False) -> Tensor
all(self : Tensor,
    dim : str,
    keepdim : bool=False,
    out : Tensor) -> Tensor
all(self : List[int]) -> bool
all(self : List[float]) -> bool
all(self : List[bool]) -> bool

divmod(x : int,
       y : int) -> Tuple[int, int]
divmod(x : float,
       y : float) -> Tuple[float, float]
divmod(x : int,
       y : float) -> Tuple[float, float]
divmod(x : float,
       y : int) -> Tuple[float, float]

list(t : str) -> List[str]
list(l : List[t]) -> List[t]

ord(string : str) -> int

chr(i : int) -> str

bin(i : int) -> str

sorted(input : List[int]) -> List[int]
sorted(input : List[float]) -> List[float]
sorted(input : List[Tensor]) -> List[Tensor]
sorted(input : List[bool]) -> List[bool]
sorted(input : List[str]) -> List[str]
sorted(self : List[t]) -> List[t]

math 模块

aten::ceil.int(int a) -> int

aten::ceil.float(float a) -> int

aten::ceil.Scalar(Scalar a) -> Scalar

aten::copysign.int(int a, int b) -> float

aten::copysign.float(float a, float b) -> float

aten::copysign.int_float(int a, float b) -> float

aten::copysign.float_int(float a, int b) -> float

aten::copysign(Scalar a, Scalar b) -> float

aten::erf.int(int a) -> float

aten::erf.float(float a) -> float

aten::erf.Scalar(Scalar a) -> Scalar

aten::erfc.int(int a) -> float

aten::erfc.float(float a) -> float

aten::erfc.Scalar(Scalar a) -> Scalar

aten::exp.int(int a) -> float

aten::exp.float(float a) -> float

aten::exp.complex(complex a) -> complex

aten::exp.Scalar(Scalar a) -> Scalar

aten::expm1.int(int a) -> float

aten::expm1.float(float a) -> float

aten::expm1.Scalar(Scalar a) -> Scalar

aten::fabs.int(int a) -> float

aten::fabs.float(float a) -> float

aten::fabs.Scalar(Scalar a) -> Scalar

aten::floor.int(int a) -> int

aten::floor.float(float a) -> int

aten::floor.Scalar(Scalar a) -> Scalar

aten::gamma.int(int a) -> float

aten::gamma.float(float a) -> float

aten::gamma.Scalar(Scalar a) -> Scalar

aten::lgamma.int(int a) -> float

aten::lgamma.float(float a) -> float

aten::lgamma.Scalar(Scalar a) -> Scalar

aten::log.int(int a) -> float

aten::log.float(float a) -> float

aten::log.complex(complex a) -> complex

aten::log.Scalar(Scalar a) -> Scalar

aten::log.int_int(int a, int b) -> float

aten::log.float_float(float a, float b) -> float

aten::log.complex_complex(complex a, complex b) -> complex

aten::log.int_float(int a, float b) -> float

aten::log.float_int(float a, int b) -> float

aten::log.int_complex(int a, complex b) -> complex

aten::log.complex_int(complex a, int b) -> complex

aten::log.float_complex(float a, complex b) -> complex

aten::log.complex_float(complex a, float b) -> complex

aten::log.Scalar_Scalar(Scalar a, Scalar b) -> float

aten::log10.int(int a) -> float

aten::log10.float(float a) -> float

aten::log10.complex(complex a) -> complex

aten::log10.Scalar(Scalar a) -> Scalar

aten::log1p.int(int a) -> float

aten::log1p.float(float a) -> float

aten::log1p.Scalar(Scalar a) -> Scalar

aten::pow.int(int a, int b) -> float

aten::pow.complex(complex a, complex b) -> complex

aten::pow.float(float a, float b) -> float

aten::pow.int_float(int a, float b) -> float

aten::pow.float_int(float a, int b) -> float

aten::pow.float_complex(float a, complex b) -> complex

aten::pow.complex_float(complex a, float b) -> complex

aten::pow.Scalar_Scalar(Scalar a, Scalar b) -> float

aten::pow.int_to_int(int a, int b) -> int

aten::sqrt.int(int a) -> float

aten::sqrt.float(float a) -> float

aten::sqrt.complex(complex a) -> complex

aten::sqrt.Scalar(Scalar a) -> Scalar

aten::isnan.float(float a) -> bool

aten::isnan.complex(complex a) -> bool

aten::asinh.int(int a) -> float

aten::asinh.float(float a) -> float

aten::asinh.complex(complex a) -> complex

aten::asinh.Scalar(Scalar a) -> Scalar

aten::atanh.int(int a) -> float

aten::atanh.float(float a) -> float

aten::atanh.complex(complex a) -> complex

aten::atanh.Scalar(Scalar a) -> Scalar

aten::cosh.int(int a) -> float

aten::cosh.float(float a) -> float

aten::cosh.complex(complex a) -> complex

aten::cosh.Scalar(Scalar a) -> Scalar

aten::sinh.int(int a) -> float

aten::sinh.float(float a) -> float

aten::sinh.complex(complex a) -> complex

aten::sinh.Scalar(Scalar a) -> Scalar

aten::tanh.int(int a) -> float

aten::tanh.float(float a) -> float

aten::tanh.complex(complex a) -> complex

aten::tanh.Scalar(Scalar a) -> Scalar

aten::acos.int(int a) -> float

aten::acos.float(float a) -> float

aten::acos.complex(complex a) -> complex

aten::acos.Scalar(Scalar a) -> Scalar

aten::asin.int(int a) -> float

aten::asin.float(float a) -> float

aten::asin.complex(complex a) -> complex

aten::asin.Scalar(Scalar a) -> Scalar

aten::atan.int(int a) -> float

aten::atan.float(float a) -> float

aten::atan.complex(complex a) -> complex

aten::atan.Scalar(Scalar a) -> Scalar

aten::atan2.int(int a, int b) -> float

aten::atan2.float(float a, float b) -> float

aten::atan2.int_float(int a, float b) -> float

aten::atan2.float_int(float a, int b) -> float

aten::atan2.Scalar_Scalar(Scalar a, Scalar b) -> float

aten::cos.int(int a) -> float

aten::cos.float(float a) -> float

aten::cos.complex(complex a) -> complex

aten::cos.Scalar(Scalar a) -> Scalar

aten::sin.int(int a) -> float

aten::sin.float(float a) -> float

aten::sin.complex(complex a) -> complex

aten::sin.Scalar(Scalar a) -> Scalar

aten::tan.int(int a) -> float

aten::tan.float(float a) -> float

aten::tan.complex(complex a) -> complex

aten::tan.Scalar(Scalar a) -> Scalar

aten::asinh.int(int a) -> float

aten::asinh.float(float a) -> float

aten::asinh.complex(complex a) -> complex

aten::asinh.Scalar(Scalar a) -> Scalar

aten::atanh.int(int a) -> float

aten::atanh.float(float a) -> float

aten::atanh.complex(complex a) -> complex

aten::atanh.Scalar(Scalar a) -> Scalar

aten::acosh.int(int a) -> float

aten::acosh.float(float a) -> float

aten::acosh.complex(complex a) -> complex

aten::acosh.Scalar(Scalar a) -> Scalar

aten::fmod.int(int a, int b) -> float

aten::fmod.float(float a, float b) -> float

aten::fmod.int_float(int a, float b) -> float

aten::fmod.float_int(float a, int b) -> float

aten::fmod(Scalar a, Scalar b) -> float

aten::modf(float a) -> (float, float)

aten::factorial.int(int a) -> int

aten::frexp(float a) -> (float, int)

aten::isinf.float(float a) -> bool

aten::isinf.complex(complex a) -> bool

aten::degrees.int(int a) -> float

aten::degrees.float(float a) -> float

aten::degrees.Scalar(Scalar a) -> Scalar

aten::radians.int(int a) -> float

aten::radians.float(float a) -> float

aten::radians.Scalar(Scalar a) -> Scalar

aten::ldexp(float x, int i) -> float

aten::gcd.int(int a, int b) -> int

aten::isfinite.float(float a) -> bool

aten::isfinite.complex(complex a) -> bool

aten::mathremainder.int(int a, int b) -> float

aten::mathremainder.float(float a, float b) -> float

aten::mathremainder.int_float(int a, float b) -> float

aten::mathremainder.float_int(float a, int b) -> float

aten::mathremainder(Scalar a, Scalar b) -> float

文档

查阅 PyTorch 的全面开发者文档

查看文档

教程

获取面向初学者和高级开发者的深度教程

查看教程

资源

查找开发资源并获取解答

查看资源