SequentialLR¶
- class torch.optim.lr_scheduler.SequentialLR(optimizer, schedulers, milestones, last_epoch=-1, verbose='deprecated')[source]¶
包含在优化过程中按顺序调用的调度程序列表。
具体来说,调度程序将根据里程碑点调用,这些里程碑点应提供每个调度程序在给定时期内应调用的确切间隔。
- 参数
示例
>>> # Assuming optimizer uses lr = 1. for all groups >>> # lr = 0.1 if epoch == 0 >>> # lr = 0.1 if epoch == 1 >>> # lr = 0.9 if epoch == 2 >>> # lr = 0.81 if epoch == 3 >>> # lr = 0.729 if epoch == 4 >>> scheduler1 = ConstantLR(optimizer, factor=0.1, total_iters=2) >>> scheduler2 = ExponentialLR(optimizer, gamma=0.9) >>> scheduler = SequentialLR(optimizer, schedulers=[scheduler1, scheduler2], milestones=[2]) >>> for epoch in range(100): >>> train(...) >>> validate(...) >>> scheduler.step()
- load_state_dict(state_dict)[source]¶
加载调度程序的状态。
- 参数
state_dict (dict) – 调度程序状态。应为调用
state_dict()
返回的对象。
- print_lr(is_verbose, group, lr, epoch=None)¶
显示当前学习率。
从版本 2.4 开始弃用:
print_lr()
已弃用。请使用get_last_lr()
访问学习率。