快捷方式

torch.nn.functional.huber_loss

torch.nn.functional.huber_loss(input, target, reduction='mean', delta=1.0, weight=None) Tensor[源码][源码]

计算 Huber 损失,可选择加权。

如果元素间的绝对误差小于 delta,则该函数使用平方项;否则使用 delta 缩放的 L1 项。

当 delta 等于 1 时,此损失等价于 SmoothL1Loss。通常,Huber 损失与 SmoothL1Loss 的区别在于一个 delta 因子(在 Smooth L1 中称为 beta)。

参数
  • input (Tensor) – 预测值。

  • target (Tensor) – 真实值。

  • reduction (str, 可选) – 指定应用于输出的归约方式:‘none’ | ‘mean’ | ‘sum’。‘mean’:取输出的平均值。‘sum’:输出将求和。‘none’:不应用归约。默认值:‘mean’。

  • delta (float, 可选) – 在 delta 缩放的 L1 和 L2 损失之间切换的阈值。默认值:1.0。

  • weight (Tensor, 可选) – 每个样本的权重。默认值:None。

返回值

Huber 损失(可选加权)。

返回类型

Tensor

文档

查阅 PyTorch 的全面开发者文档

查看文档

教程

获取面向初学者和高级开发者的深度教程

查看教程

资源

查找开发资源并获得问题解答

查看资源