torch.fft.rfft¶
- torch.fft.rfft(input, n=None, dim=-1, norm=None, *, out=None) Tensor ¶
计算实值
input
的一维傅里叶变换。实信号的 FFT 具有 Hermitian 对称性,
X[i] = conj(X[-i])
,因此输出仅包含低于 Nyquist 频率的正频率。要计算完整的输出,请使用fft()
。注意
支持在 GPU 架构 SM53 或更高版本的 CUDA 上使用 torch.half。但它仅支持转换的每个维度中信号长度为 2 的幂次方。
- 参数
input (Tensor) – 实数输入张量
n (int, 可选) – 信号长度。如果给出,输入将在计算实数 FFT 之前被零填充或裁剪到此长度。
dim (int, 可选) – 进行一维实数 FFT 的维度。
norm (str, 可选) –
归一化模式。对于正向变换(
rfft()
),它们对应于"forward"
- 按1/n
归一化"backward"
- 无归一化"ortho"
- 按1/sqrt(n)
归一化(使 FFT 正交)
使用相同的归一化模式调用逆向变换(
irfft()
)将在两个变换之间应用总体的1/n
归一化。这是使irfft()
成为精确逆变换所必需的。默认值为
"backward"
(无归一化)。
- 关键字参数
out (Tensor, 可选) – 输出张量。
示例
>>> t = torch.arange(4) >>> t tensor([0, 1, 2, 3]) >>> torch.fft.rfft(t) tensor([ 6.+0.j, -2.+2.j, -2.+0.j])
与
fft()
的完整输出进行比较>>> torch.fft.fft(t) tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
请注意,对称元素
T[-1] == T[1].conj()
已被省略。在 Nyquist 频率下,T[-2] == T[2]
是其自身的对称对,因此必须始终是实数值。