快捷方式

torch.bernoulli

torch.bernoulli(input, *, generator=None, out=None) Tensor

从伯努利分布中抽取二进制随机数(0 或 1)。

input 张量应包含用于抽取二进制随机数的概率的张量。因此,input 中的所有值必须在以下范围内:0inputi10 \leq \text{input}_i \leq 1.

输出张量的 ith\text{i}^{th} 元素将根据 input 中给出的 ith\text{i}^{th} 概率值抽取 11 的值。

outiBernoulli(p=inputi)\text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i})

返回的 out 张量仅包含 0 或 1 的值,并且与 input 的形状相同。

out 可以具有整型 dtype,但 input 必须具有浮点型 dtype

参数

input (Tensor) – 用于伯努利分布的概率值的输入张量

关键字参数
  • generator (torch.Generator, 可选) – 用于采样的伪随机数生成器

  • out (Tensor, 可选) – 输出张量。

示例

>>> a = torch.empty(3, 3).uniform_(0, 1)  # generate a uniform random matrix with range [0, 1]
>>> a
tensor([[ 0.1737,  0.0950,  0.3609],
        [ 0.7148,  0.0289,  0.2676],
        [ 0.9456,  0.8937,  0.7202]])
>>> torch.bernoulli(a)
tensor([[ 1.,  0.,  0.],
        [ 0.,  0.,  0.],
        [ 1.,  1.,  1.]])

>>> a = torch.ones(3, 3) # probability of drawing "1" is 1
>>> torch.bernoulli(a)
tensor([[ 1.,  1.,  1.],
        [ 1.,  1.,  1.],
        [ 1.,  1.,  1.]])
>>> a = torch.zeros(3, 3) # probability of drawing "1" is 0
>>> torch.bernoulli(a)
tensor([[ 0.,  0.,  0.],
        [ 0.,  0.,  0.],
        [ 0.,  0.,  0.]])

文档

访问 PyTorch 的全面开发人员文档

查看文档

教程

获取适用于初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源