快捷方式

ConvTranspose1d

class torch.ao.nn.quantized.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)[source]

对由多个输入平面组成的输入图像应用一维转置卷积运算符。有关输入参数、参数和实现的详细信息,请参阅 ConvTranspose1d

注意

目前仅实现了 QNNPACK 引擎。请设置 torch.backends.quantized.engine = ‘qnnpack’

有关特殊说明,请参阅 Conv1d

变量
  • weight (张量) – 从可学习权重参数派生的打包张量。

  • scale (张量) – 输出比例的标量

  • zero_point (张量) – 输出零点的标量

请参阅 ConvTranspose2d 以获取其他属性。

示例

>>> torch.backends.quantized.engine = 'qnnpack'
>>> from torch.ao.nn import quantized as nnq
>>> # With square kernels and equal stride
>>> m = nnq.ConvTranspose1d(16, 33, 3, stride=2)
>>> # non-square kernels and unequal stride and with padding
>>> m = nnq.ConvTranspose1d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
>>> input = torch.randn(20, 16, 50)
>>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8)
>>> output = m(q_input)
>>> # exact output size can be also specified as an argument
>>> input = torch.randn(1, 16, 12)
>>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8)
>>> downsample = nnq.Conv1d(16, 16, 3, stride=2, padding=1)
>>> upsample = nnq.ConvTranspose1d(16, 16, 3, stride=2, padding=1)
>>> h = downsample(q_input)
>>> h.size()
torch.Size([1, 16, 6])
>>> output = upsample(h, output_size=input.size())
>>> output.size()
torch.Size([1, 16, 12])

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源