注意
点击 此处 下载完整的示例代码
滤波器设计教程¶
作者: Moto Hira
本教程展示了如何创建基本的数字滤波器(脉冲响应)及其属性。
我们将研究基于窗函数-辛克内核的低通、高通和带通滤波器,以及频率采样方法。
import torch
import torchaudio
print(torch.__version__)
print(torchaudio.__version__)
import matplotlib.pyplot as plt
2.6.0
2.6.0
from torchaudio.prototype.functional import frequency_impulse_response, sinc_impulse_response
窗函数-辛克滤波器¶
辛克滤波器 是一种理想化的滤波器,它移除高于截止频率的频率,而不影响较低的频率。
辛克滤波器在解析解中具有无限的滤波器宽度。在数值计算中,辛克滤波器无法精确表达,因此需要近似。
窗函数-辛克有限脉冲响应是辛克滤波器的近似。它首先评估给定截止频率的辛克函数,然后截断滤波器裙边,并应用窗口函数(例如汉明窗)以减少由截断引入的伪影。
sinc_impulse_response()
为给定的截止频率生成窗函数-辛克脉冲响应。
低通滤波器¶
脉冲响应¶
创建辛克 IR 非常简单,只需将截止频率值传递给 sinc_impulse_response()
。
cutoff = torch.linspace(0.0, 1.0, 9)
irs = sinc_impulse_response(cutoff, window_size=513)
print("Cutoff shape:", cutoff.shape)
print("Impulse response shape:", irs.shape)
Cutoff shape: torch.Size([9])
Impulse response shape: torch.Size([9, 513])
让我们可视化生成的脉冲响应。
def plot_sinc_ir(irs, cutoff):
num_filts, window_size = irs.shape
half = window_size // 2
fig, axes = plt.subplots(num_filts, 1, sharex=True, figsize=(9.6, 8))
t = torch.linspace(-half, half - 1, window_size)
for ax, ir, coff, color in zip(axes, irs, cutoff, plt.cm.tab10.colors):
ax.plot(t, ir, linewidth=1.2, color=color, zorder=4, label=f"Cutoff: {coff}")
ax.legend(loc=(1.05, 0.2), handletextpad=0, handlelength=0)
ax.grid(True)
fig.suptitle(
"Impulse response of sinc low-pass filter for different cut-off frequencies\n"
"(Frequencies are relative to Nyquist frequency)"
)
axes[-1].set_xticks([i * half // 4 for i in range(-4, 5)])
fig.tight_layout()

频率响应¶
接下来,让我们看看频率响应。简单地将傅里叶变换应用于脉冲响应将给出频率响应。
frs = torch.fft.rfft(irs, n=2048, dim=1).abs()
让我们可视化生成的频率响应。
def plot_sinc_fr(frs, cutoff, band=False):
num_filts, num_fft = frs.shape
num_ticks = num_filts + 1 if band else num_filts
fig, axes = plt.subplots(num_filts, 1, sharex=True, sharey=True, figsize=(9.6, 8))
for ax, fr, coff, color in zip(axes, frs, cutoff, plt.cm.tab10.colors):
ax.grid(True)
ax.semilogy(fr, color=color, zorder=4, label=f"Cutoff: {coff}")
ax.legend(loc=(1.05, 0.2), handletextpad=0, handlelength=0).set_zorder(3)
axes[-1].set(
ylim=[None, 100],
yticks=[1e-9, 1e-6, 1e-3, 1],
xticks=torch.linspace(0, num_fft, num_ticks),
xticklabels=[f"{i/(num_ticks - 1)}" for i in range(num_ticks)],
xlabel="Frequency",
)
fig.suptitle(
"Frequency response of sinc low-pass filter for different cut-off frequencies\n"
"(Frequencies are relative to Nyquist frequency)"
)
fig.tight_layout()

高通滤波器¶
高通滤波器可以通过从狄拉克 delta 函数中减去低通脉冲响应来获得。
将 high_pass=True
传递给 sinc_impulse_response()
将把返回的滤波器内核更改为高通滤波器。
irs = sinc_impulse_response(cutoff, window_size=513, high_pass=True)
frs = torch.fft.rfft(irs, n=2048, dim=1).abs()
脉冲响应¶

频率响应¶

带通滤波器¶
带通滤波器可以通过从较低频带的低通滤波器中减去较高频带的低通滤波器来获得。
脉冲响应¶

频率响应¶

频率采样¶
我们研究的下一种方法从期望的频率响应开始,并通过应用逆傅里叶变换获得脉冲响应。
frequency_impulse_response()
接受频率的(未归一化的)幅度分布,并从中构建脉冲响应。
但请注意,生成的脉冲响应不会产生所需的频率响应。
在下面,我们创建多个滤波器,并比较输入频率响应和实际频率响应。
砖墙滤波器¶
让我们从砖墙滤波器开始
magnitudes = torch.concat([torch.ones((128,)), torch.zeros((128,))])
ir = frequency_impulse_response(magnitudes)
print("Magnitudes:", magnitudes.shape)
print("Impulse Response:", ir.shape)
Magnitudes: torch.Size([256])
Impulse Response: torch.Size([510])
def plot_ir(magnitudes, ir, num_fft=2048):
fr = torch.fft.rfft(ir, n=num_fft, dim=0).abs()
ir_size = ir.size(-1)
half = ir_size // 2
fig, axes = plt.subplots(3, 1)
t = torch.linspace(-half, half - 1, ir_size)
axes[0].plot(t, ir)
axes[0].grid(True)
axes[0].set(title="Impulse Response")
axes[0].set_xticks([i * half // 4 for i in range(-4, 5)])
t = torch.linspace(0, 1, fr.numel())
axes[1].plot(t, fr, label="Actual")
axes[2].semilogy(t, fr, label="Actual")
t = torch.linspace(0, 1, magnitudes.numel())
for i in range(1, 3):
axes[i].plot(t, magnitudes, label="Desired (input)", linewidth=1.1, linestyle="--")
axes[i].grid(True)
axes[1].set(title="Frequency Response")
axes[2].set(title="Frequency Response (log-scale)", xlabel="Frequency")
axes[2].legend(loc="center right")
fig.tight_layout()
plot_ir(magnitudes, ir)

请注意,在过渡带周围存在伪影。当窗口尺寸较小时,这一点更明显。
magnitudes = torch.concat([torch.ones((32,)), torch.zeros((32,))])
ir = frequency_impulse_response(magnitudes)
plot_ir(magnitudes, ir)

任意形状¶
magnitudes = torch.linspace(0, 1, 64) ** 4.0
ir = frequency_impulse_response(magnitudes)
plot_ir(magnitudes, ir)

magnitudes = torch.sin(torch.linspace(0, 10, 64)) ** 4.0
ir = frequency_impulse_response(magnitudes)
plot_ir(magnitudes, ir)

参考¶
https://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch16.pdf
https://courses.engr.illinois.edu/ece401/fa2020/slides/lec10.pdf
https://ccrma.stanford.edu/~jos/sasp/Windowing_Desired_Impulse_Response.html
脚本总运行时间: ( 0 分钟 5.247 秒)