注意
点击 这里 下载完整的示例代码
音频特征提取¶
作者: Moto Hira
torchaudio
实现音频领域常用的特征提取。它们位于 torchaudio.functional
和 torchaudio.transforms
中。
functional
以独立函数的形式实现特征。它们是无状态的。
transforms
以对象的形式实现特征,使用来自 functional
和 torch.nn.Module
的实现。它们可以使用 TorchScript 进行序列化。
import torch
import torchaudio
import torchaudio.functional as F
import torchaudio.transforms as T
print(torch.__version__)
print(torchaudio.__version__)
import librosa
import matplotlib.pyplot as plt
2.5.0
2.5.0
音频特征概述¶
下图显示了常见音频特征与生成它们的 torchaudio API 之间的关系。
有关可用特征的完整列表,请参阅文档。
准备¶
注意
在 Google Colab 中运行本教程时,安装所需的包
!pip install librosa
from IPython.display import Audio
from matplotlib.patches import Rectangle
from torchaudio.utils import download_asset
torch.random.manual_seed(0)
SAMPLE_SPEECH = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav")
def plot_waveform(waveform, sr, title="Waveform", ax=None):
waveform = waveform.numpy()
num_channels, num_frames = waveform.shape
time_axis = torch.arange(0, num_frames) / sr
if ax is None:
_, ax = plt.subplots(num_channels, 1)
ax.plot(time_axis, waveform[0], linewidth=1)
ax.grid(True)
ax.set_xlim([0, time_axis[-1]])
ax.set_title(title)
def plot_spectrogram(specgram, title=None, ylabel="freq_bin", ax=None):
if ax is None:
_, ax = plt.subplots(1, 1)
if title is not None:
ax.set_title(title)
ax.set_ylabel(ylabel)
ax.imshow(librosa.power_to_db(specgram), origin="lower", aspect="auto", interpolation="nearest")
def plot_fbank(fbank, title=None):
fig, axs = plt.subplots(1, 1)
axs.set_title(title or "Filter bank")
axs.imshow(fbank, aspect="auto")
axs.set_ylabel("frequency bin")
axs.set_xlabel("mel bin")
频谱图¶
要获取音频信号的频率构成随时间变化的方式,可以使用 torchaudio.transforms.Spectrogram()
。
# Load audio
SPEECH_WAVEFORM, SAMPLE_RATE = torchaudio.load(SAMPLE_SPEECH)
# Define transform
spectrogram = T.Spectrogram(n_fft=512)
# Perform transform
spec = spectrogram(SPEECH_WAVEFORM)
fig, axs = plt.subplots(2, 1)
plot_waveform(SPEECH_WAVEFORM, SAMPLE_RATE, title="Original waveform", ax=axs[0])
plot_spectrogram(spec[0], title="spectrogram", ax=axs[1])
fig.tight_layout()
Audio(SPEECH_WAVEFORM.numpy(), rate=SAMPLE_RATE)
n_fft
参数的影响¶
频谱图计算的核心是(短期)傅里叶变换,n_fft
参数对应于以下离散傅里叶变换定义中的 \(N\)。
$$ X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N} nk} $$
(有关傅里叶变换的详细信息,请参阅 维基百科。)
n_fft
的值决定了频率轴的分辨率。但是,使用更高的 n_fft
值,能量将分布在更多 bin 中,因此当你可视化它时,它可能看起来更模糊,即使它们具有更高的分辨率。
以下说明了这一点;
注意
hop_length
决定了时间轴的分辨率。默认情况下(即 hop_length=None
和 win_length=None
),使用 n_fft // 4
的值。这里我们跨不同的 n_fft
使用相同的 hop_length
值,以便它们在时间轴上具有相同的元素数量。
n_ffts = [32, 128, 512, 2048]
hop_length = 64
specs = []
for n_fft in n_ffts:
spectrogram = T.Spectrogram(n_fft=n_fft, hop_length=hop_length)
spec = spectrogram(SPEECH_WAVEFORM)
specs.append(spec)
在比较信号时,最好使用相同的采样率,但是如果你必须使用不同的采样率,则必须注意解释 n_fft
的含义。回想一下,n_fft
决定了给定采样率下频率轴的分辨率。换句话说,频率轴上每个 bin 所代表的内容取决于采样率。
如上所述,更改 n_fft
的值不会改变相同输入信号的频率范围的覆盖范围。
让我们对音频进行降采样,并使用相同的 n_fft
值应用频谱图。
# Downsample to half of the original sample rate
speech2 = torchaudio.functional.resample(SPEECH_WAVEFORM, SAMPLE_RATE, SAMPLE_RATE // 2)
# Upsample to the original sample rate
speech3 = torchaudio.functional.resample(speech2, SAMPLE_RATE // 2, SAMPLE_RATE)
# Apply the same spectrogram
spectrogram = T.Spectrogram(n_fft=512)
spec0 = spectrogram(SPEECH_WAVEFORM)
spec2 = spectrogram(speech2)
spec3 = spectrogram(speech3)
# Visualize it
fig, axs = plt.subplots(3, 1)
plot_spectrogram(spec0[0], ylabel="Original", ax=axs[0])
axs[0].add_patch(Rectangle((0, 3), 212, 128, edgecolor="r", facecolor="none"))
plot_spectrogram(spec2[0], ylabel="Downsampled", ax=axs[1])
plot_spectrogram(spec3[0], ylabel="Upsampled", ax=axs[2])
fig.tight_layout()
在上面的可视化中,第二个图(“降采样”)可能给人的印象是频谱图被拉伸了。这是因为频率 bin 的含义不同于原始含义。即使它们具有相同数量的 bin,在第二个图中,频率仅覆盖到原始采样率的一半。如果我们再次对降采样信号进行重采样,使其具有与原始信号相同的采样率,则这一点会更加清楚。
GriffinLim¶
要从频谱图中恢复波形,可以使用 torchaudio.transforms.GriffinLim
。
必须使用与频谱图相同的参数集。
# Define transforms
n_fft = 1024
spectrogram = T.Spectrogram(n_fft=n_fft)
griffin_lim = T.GriffinLim(n_fft=n_fft)
# Apply the transforms
spec = spectrogram(SPEECH_WAVEFORM)
reconstructed_waveform = griffin_lim(spec)
_, axes = plt.subplots(2, 1, sharex=True, sharey=True)
plot_waveform(SPEECH_WAVEFORM, SAMPLE_RATE, title="Original", ax=axes[0])
plot_waveform(reconstructed_waveform, SAMPLE_RATE, title="Reconstructed", ax=axes[1])
Audio(reconstructed_waveform, rate=SAMPLE_RATE)
梅尔滤波器组¶
torchaudio.functional.melscale_fbanks()
生成将频率 bin 转换为梅尔刻度 bin 的滤波器组。
由于此函数不需要输入音频/特征,因此 torchaudio.transforms()
中没有等效的转换。
n_fft = 256
n_mels = 64
sample_rate = 6000
mel_filters = F.melscale_fbanks(
int(n_fft // 2 + 1),
n_mels=n_mels,
f_min=0.0,
f_max=sample_rate / 2.0,
sample_rate=sample_rate,
norm="slaney",
)
plot_fbank(mel_filters, "Mel Filter Bank - torchaudio")
与 librosa 的比较¶
作为参考,以下是使用 librosa
获取梅尔滤波器组的等效方法。
mel_filters_librosa = librosa.filters.mel(
sr=sample_rate,
n_fft=n_fft,
n_mels=n_mels,
fmin=0.0,
fmax=sample_rate / 2.0,
norm="slaney",
htk=True,
).T
plot_fbank(mel_filters_librosa, "Mel Filter Bank - librosa")
mse = torch.square(mel_filters - mel_filters_librosa).mean().item()
print("Mean Square Difference: ", mse)
Mean Square Difference: 3.934872696751886e-17
梅尔频谱图¶
生成梅尔刻度频谱图涉及生成频谱图并执行梅尔刻度转换。在 torchaudio
中,torchaudio.transforms.MelSpectrogram()
提供了此功能。
n_fft = 1024
win_length = None
hop_length = 512
n_mels = 128
mel_spectrogram = T.MelSpectrogram(
sample_rate=sample_rate,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
center=True,
pad_mode="reflect",
power=2.0,
norm="slaney",
n_mels=n_mels,
mel_scale="htk",
)
melspec = mel_spectrogram(SPEECH_WAVEFORM)
plot_spectrogram(melspec[0], title="MelSpectrogram - torchaudio", ylabel="mel freq")
与 librosa 的比较¶
作为参考,以下是使用 librosa
生成梅尔刻度频谱图的等效方法。
melspec_librosa = librosa.feature.melspectrogram(
y=SPEECH_WAVEFORM.numpy()[0],
sr=sample_rate,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
center=True,
pad_mode="reflect",
power=2.0,
n_mels=n_mels,
norm="slaney",
htk=True,
)
plot_spectrogram(melspec_librosa, title="MelSpectrogram - librosa", ylabel="mel freq")
mse = torch.square(melspec - melspec_librosa).mean().item()
print("Mean Square Difference: ", mse)
Mean Square Difference: 1.2895221557229775e-09
MFCC¶
n_fft = 2048
win_length = None
hop_length = 512
n_mels = 256
n_mfcc = 256
mfcc_transform = T.MFCC(
sample_rate=sample_rate,
n_mfcc=n_mfcc,
melkwargs={
"n_fft": n_fft,
"n_mels": n_mels,
"hop_length": hop_length,
"mel_scale": "htk",
},
)
mfcc = mfcc_transform(SPEECH_WAVEFORM)
plot_spectrogram(mfcc[0], title="MFCC")
与 librosa 的比较¶
melspec = librosa.feature.melspectrogram(
y=SPEECH_WAVEFORM.numpy()[0],
sr=sample_rate,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
n_mels=n_mels,
htk=True,
norm=None,
)
mfcc_librosa = librosa.feature.mfcc(
S=librosa.core.spectrum.power_to_db(melspec),
n_mfcc=n_mfcc,
dct_type=2,
norm="ortho",
)
plot_spectrogram(mfcc_librosa, title="MFCC (librosa)")
mse = torch.square(mfcc - mfcc_librosa).mean().item()
print("Mean Square Difference: ", mse)
Mean Square Difference: 0.8104011416435242
LFCC¶
n_fft = 2048
win_length = None
hop_length = 512
n_lfcc = 256
lfcc_transform = T.LFCC(
sample_rate=sample_rate,
n_lfcc=n_lfcc,
speckwargs={
"n_fft": n_fft,
"win_length": win_length,
"hop_length": hop_length,
},
)
lfcc = lfcc_transform(SPEECH_WAVEFORM)
plot_spectrogram(lfcc[0], title="LFCC")
音高¶
pitch = F.detect_pitch_frequency(SPEECH_WAVEFORM, SAMPLE_RATE)
def plot_pitch(waveform, sr, pitch):
figure, axis = plt.subplots(1, 1)
axis.set_title("Pitch Feature")
axis.grid(True)
end_time = waveform.shape[1] / sr
time_axis = torch.linspace(0, end_time, waveform.shape[1])
axis.plot(time_axis, waveform[0], linewidth=1, color="gray", alpha=0.3)
axis2 = axis.twinx()
time_axis = torch.linspace(0, end_time, pitch.shape[1])
axis2.plot(time_axis, pitch[0], linewidth=2, label="Pitch", color="green")
axis2.legend(loc=0)
plot_pitch(SPEECH_WAVEFORM, SAMPLE_RATE, pitch)
脚本总运行时间:(0 分钟 9.807 秒)