• 文档 >
  • 使用 NVDEC 加速视频解码 >
  • 旧版本 (稳定)
快捷方式

使用 NVDEC 加速视频解码

作者: Moto Hira

本教程演示如何使用 NVIDIA 的硬件视频解码器 (NVDEC) 与 TorchAudio,以及它如何提高视频解码性能。

注意

本教程需要使用启用 HW 加速编译的 FFmpeg 库。

请参考 启用 GPU 视频解码器/编码器 了解如何使用 HW 加速构建 FFmpeg。

import torch
import torchaudio

print(torch.__version__)
print(torchaudio.__version__)
2.5.0
2.5.0
import os
import time

import matplotlib.pyplot as plt
from torchaudio.io import StreamReader

检查先决条件

首先,我们检查 TorchAudio 是否正确检测到支持 HW 解码器/编码器的 FFmpeg 库。

from torchaudio.utils import ffmpeg_utils
print("FFmpeg Library versions:")
for k, ver in ffmpeg_utils.get_versions().items():
    print(f"  {k}:\t{'.'.join(str(v) for v in ver)}")
FFmpeg Library versions:
  libavcodec:   60.3.100
  libavdevice:  60.1.100
  libavfilter:  9.3.100
  libavformat:  60.3.100
  libavutil:    58.2.100
print("Available NVDEC Decoders:")
for k in ffmpeg_utils.get_video_decoders().keys():
    if "cuvid" in k:
        print(f" - {k}")
Available NVDEC Decoders:
 - av1_cuvid
 - h264_cuvid
 - hevc_cuvid
 - mjpeg_cuvid
 - mpeg1_cuvid
 - mpeg2_cuvid
 - mpeg4_cuvid
 - vc1_cuvid
 - vp8_cuvid
 - vp9_cuvid
print("Avaialbe GPU:")
print(torch.cuda.get_device_properties(0))
Avaialbe GPU:
_CudaDeviceProperties(name='NVIDIA A10G', major=8, minor=6, total_memory=22502MB, multi_processor_count=80, uuid=3a6a8555-efc9-d0dc-972b-36624af6fad8, L2_cache_size=6MB)

我们将使用以下视频,它具有以下属性;

  • 编解码器:H.264

  • 分辨率:960x540

  • FPS:29.97

  • 像素格式:YUV420P

src = torchaudio.utils.download_asset(
    "tutorial-assets/stream-api/NASAs_Most_Scientifically_Complex_Space_Observatory_Requires_Precision-MP4_small.mp4"
)
  0%|          | 0.00/31.8M [00:00<?, ?B/s]
100%|##########| 31.8M/31.8M [00:00<00:00, 545MB/s]

使用 NVDEC 解码视频

要使用 HW 视频解码器,您需要在定义输出视频流时指定 HW 解码器,方法是将 decoder 选项传递给 add_video_stream() 方法。

s = StreamReader(src)
s.add_video_stream(5, decoder="h264_cuvid")
s.fill_buffer()
(video,) = s.pop_chunks()

视频帧被解码并作为 NCHW 格式的张量返回。

torch.Size([5, 3, 540, 960]) torch.uint8

默认情况下,解码后的帧会被送回 CPU 内存,并会创建 CPU 张量。

print(video.device)
cpu

通过指定 hw_accel 选项,您可以将解码后的帧转换为 CUDA 张量。 hw_accel 选项接受字符串值,并将其传递给 torch.device

注意

目前,hw_accel 选项和 add_basic_video_stream() 不兼容。 add_basic_video_stream 添加了解码后处理过程,该过程是为 CPU 内存中的帧设计的。请使用 add_video_stream()

s = StreamReader(src)
s.add_video_stream(5, decoder="h264_cuvid", hw_accel="cuda:0")
s.fill_buffer()
(video,) = s.pop_chunks()

print(video.shape, video.dtype, video.device)
torch.Size([5, 3, 540, 960]) torch.uint8 cuda:0

注意

当有多个 GPU 可用时,StreamReader 默认使用第一个 GPU。您可以通过提供 "gpu" 选项来更改此设置。

# Video data is sent to CUDA device 0, decoded and
# converted on the same device.
s.add_video_stream(
    ...,
    decoder="h264_cuvid",
    decoder_option={"gpu": "0"},
    hw_accel="cuda:0",
)

注意

"gpu" 选项和 hw_accel 选项可以独立指定。如果它们不匹配,解码后的帧会自动传输到 hw_accell 指定的设备。

# Video data is sent to CUDA device 0, and decoded there.
# Then it is transfered to CUDA device 1, and converted to
# CUDA tensor.
s.add_video_stream(
    ...,
    decoder="h264_cuvid",
    decoder_option={"gpu": "0"},
    hw_accel="cuda:1",
)

可视化

让我们看一下由 HW 解码器解码的帧,并将它们与软件解码器的等效结果进行比较。

以下函数会跳转到给定的时间戳,并使用指定的解码器解码一帧。

def test_decode(decoder: str, seek: float):
    s = StreamReader(src)
    s.seek(seek)
    s.add_video_stream(1, decoder=decoder)
    s.fill_buffer()
    (video,) = s.pop_chunks()
    return video[0]
timestamps = [12, 19, 45, 131, 180]

cpu_frames = [test_decode(decoder="h264", seek=ts) for ts in timestamps]
cuda_frames = [test_decode(decoder="h264_cuvid", seek=ts) for ts in timestamps]

注意

目前,HW 解码器不支持颜色空间转换。解码后的帧为 YUV 格式。以下函数执行 YUV 到 RGB 转换(以及用于绘图的轴混排)。

def yuv_to_rgb(frames):
    frames = frames.cpu().to(torch.float)
    y = frames[..., 0, :, :]
    u = frames[..., 1, :, :]
    v = frames[..., 2, :, :]

    y /= 255
    u = u / 255 - 0.5
    v = v / 255 - 0.5

    r = y + 1.14 * v
    g = y + -0.396 * u - 0.581 * v
    b = y + 2.029 * u

    rgb = torch.stack([r, g, b], -1)
    rgb = (rgb * 255).clamp(0, 255).to(torch.uint8)
    return rgb.numpy()

现在,我们可视化结果。

def plot():
    n_rows = len(timestamps)
    fig, axes = plt.subplots(n_rows, 2, figsize=[12.8, 16.0])
    for i in range(n_rows):
        axes[i][0].imshow(yuv_to_rgb(cpu_frames[i]))
        axes[i][1].imshow(yuv_to_rgb(cuda_frames[i]))

    axes[0][0].set_title("Software decoder")
    axes[0][1].set_title("HW decoder")
    plt.setp(axes, xticks=[], yticks=[])
    plt.tight_layout()


plot()
Software decoder, HW decoder

对于作者来说,它们是无法区分的。如果您发现任何问题,请随时告诉我们。:)

HW 调整大小和裁剪

您可以使用 decoder_option 参数提供解码器特定的选项。

以下选项在预处理中经常相关。

  • resize: 将帧调整为 (width)x(height)

  • crop: 裁剪帧 (top)x(bottom)x(left)x(right)。请注意,指定的值是删除的行/列的数量。最终图像大小为 (width - left - right)x(height - top -bottom)。如果同时使用 cropresize 选项,则会先执行 crop

有关其他可用选项,请运行 ffmpeg -h decoder=h264_cuvid

def test_options(option):
    s = StreamReader(src)
    s.seek(87)
    s.add_video_stream(1, decoder="h264_cuvid", hw_accel="cuda:0", decoder_option=option)
    s.fill_buffer()
    (video,) = s.pop_chunks()
    print(f"Option: {option}:\t{video.shape}")
    return video[0]
original = test_options(option=None)
resized = test_options(option={"resize": "480x270"})
cropped = test_options(option={"crop": "135x135x240x240"})
cropped_and_resized = test_options(option={"crop": "135x135x240x240", "resize": "640x360"})
Option: None:   torch.Size([1, 3, 540, 960])
Option: {'resize': '480x270'}:  torch.Size([1, 3, 270, 480])
Option: {'crop': '135x135x240x240'}:    torch.Size([1, 3, 270, 480])
Option: {'crop': '135x135x240x240', 'resize': '640x360'}:       torch.Size([1, 3, 360, 640])
def plot():
    fig, axes = plt.subplots(2, 2, figsize=[12.8, 9.6])
    axes[0][0].imshow(yuv_to_rgb(original))
    axes[0][1].imshow(yuv_to_rgb(resized))
    axes[1][0].imshow(yuv_to_rgb(cropped))
    axes[1][1].imshow(yuv_to_rgb(cropped_and_resized))

    axes[0][0].set_title("Original")
    axes[0][1].set_title("Resized")
    axes[1][0].set_title("Cropped")
    axes[1][1].set_title("Cropped and resized")
    plt.tight_layout()
    return fig


plot()
Original, Resized, Cropped, Cropped and resized
<Figure size 1280x960 with 4 Axes>

比较调整大小方法

与软件缩放不同,NVDEC 不提供选择缩放算法的选项。在 ML 应用程序中,通常需要构建具有类似数值属性的预处理管道。因此,在这里我们比较了硬件调整大小的结果与不同算法的软件调整大小的结果。

我们将使用以下视频,该视频包含使用以下命令生成的测试模式。

ffmpeg -y -f lavfi -t 12.05 -i mptestsrc -movflags +faststart mptestsrc.mp4
test_src = torchaudio.utils.download_asset("tutorial-assets/mptestsrc.mp4")
  0%|          | 0.00/232k [00:00<?, ?B/s]
100%|##########| 232k/232k [00:00<00:00, 41.6MB/s]

以下函数会解码视频并应用指定的缩放算法。

def decode_resize_ffmpeg(mode, height, width, seek):
    filter_desc = None if mode is None else f"scale={width}:{height}:sws_flags={mode}"
    s = StreamReader(test_src)
    s.add_video_stream(1, filter_desc=filter_desc)
    s.seek(seek)
    s.fill_buffer()
    (chunk,) = s.pop_chunks()
    return chunk

以下函数使用 HW 解码器来解码视频并调整大小。

def decode_resize_cuvid(height, width, seek):
    s = StreamReader(test_src)
    s.add_video_stream(1, decoder="h264_cuvid", decoder_option={"resize": f"{width}x{height}"}, hw_accel="cuda:0")
    s.seek(seek)
    s.fill_buffer()
    (chunk,) = s.pop_chunks()
    return chunk.cpu()

现在,我们执行它们并可视化生成的帧。

params = {"height": 224, "width": 224, "seek": 3}

frames = [
    decode_resize_ffmpeg(None, **params),
    decode_resize_ffmpeg("neighbor", **params),
    decode_resize_ffmpeg("bilinear", **params),
    decode_resize_ffmpeg("bicubic", **params),
    decode_resize_cuvid(**params),
    decode_resize_ffmpeg("spline", **params),
    decode_resize_ffmpeg("lanczos:param0=1", **params),
    decode_resize_ffmpeg("lanczos:param0=3", **params),
    decode_resize_ffmpeg("lanczos:param0=5", **params),
]
def plot():
    fig, axes = plt.subplots(3, 3, figsize=[12.8, 15.2])
    for i, f in enumerate(frames):
        h, w = f.shape[2:4]
        f = f[..., : h // 4, : w // 4]
        axes[i // 3][i % 3].imshow(yuv_to_rgb(f[0]))
    axes[0][0].set_title("Original")
    axes[0][1].set_title("nearest neighbor")
    axes[0][2].set_title("bilinear")
    axes[1][0].set_title("bicubic")
    axes[1][1].set_title("NVDEC")
    axes[1][2].set_title("spline")
    axes[2][0].set_title("lanczos(1)")
    axes[2][1].set_title("lanczos(3)")
    axes[2][2].set_title("lanczos(5)")

    plt.setp(axes, xticks=[], yticks=[])
    plt.tight_layout()


plot()
Original, nearest neighbor, bilinear, bicubic, NVDEC, spline, lanczos(1), lanczos(3), lanczos(5)

没有一个是完全相同的。对于作者来说,lanczos(1) 似乎与 NVDEC 最相似。双三次曲线看起来也很接近。

使用 StreamReader 对 NVDEC 进行基准测试

在本节中,我们将比较软件视频解码和 HW 视频解码的性能。

将解码后的帧放置在 CUDA 上

首先,我们比较软件解码器和硬件编码器解码相同视频所需的时间。为了使结果具有可比性,在使用软件解码器时,我们将生成的张量移动到 CUDA。

测试过程如下所示

  • 使用硬件解码器并将数据直接放置在 CUDA 上

  • 使用软件解码器,生成 CPU 张量并将其移动到 CUDA。

以下函数实现了硬件解码器测试用例。

def test_decode_cuda(src, decoder, hw_accel="cuda", frames_per_chunk=5):
    s = StreamReader(src)
    s.add_video_stream(frames_per_chunk, decoder=decoder, hw_accel=hw_accel)

    num_frames = 0
    chunk = None
    t0 = time.monotonic()
    for (chunk,) in s.stream():
        num_frames += chunk.shape[0]
    elapsed = time.monotonic() - t0
    print(f" - Shape: {chunk.shape}")
    fps = num_frames / elapsed
    print(f" - Processed {num_frames} frames in {elapsed:.2f} seconds. ({fps:.2f} fps)")
    return fps

以下函数实现了软件解码器测试用例。

def test_decode_cpu(src, threads, decoder=None, frames_per_chunk=5):
    s = StreamReader(src)
    s.add_video_stream(frames_per_chunk, decoder=decoder, decoder_option={"threads": f"{threads}"})

    num_frames = 0
    device = torch.device("cuda")
    t0 = time.monotonic()
    for i, (chunk,) in enumerate(s.stream()):
        if i == 0:
            print(f" - Shape: {chunk.shape}")
        num_frames += chunk.shape[0]
        chunk = chunk.to(device)
    elapsed = time.monotonic() - t0
    fps = num_frames / elapsed
    print(f" - Processed {num_frames} frames in {elapsed:.2f} seconds. ({fps:.2f} fps)")
    return fps

对于每个视频分辨率,我们使用不同线程数运行多个软件解码器测试用例。

def run_decode_tests(src, frames_per_chunk=5):
    fps = []
    print(f"Testing: {os.path.basename(src)}")
    for threads in [1, 4, 8, 16]:
        print(f"* Software decoding (num_threads={threads})")
        fps.append(test_decode_cpu(src, threads))
    print("* Hardware decoding")
    fps.append(test_decode_cuda(src, decoder="h264_cuvid"))
    return fps

现在我们使用不同分辨率的视频运行测试。

QVGA

src_qvga = torchaudio.utils.download_asset("tutorial-assets/testsrc2_qvga.h264.mp4")
fps_qvga = run_decode_tests(src_qvga)
  0%|          | 0.00/1.06M [00:00<?, ?B/s]
100%|##########| 1.06M/1.06M [00:00<00:00, 147MB/s]
Testing: testsrc2_qvga.h264.mp4
* Software decoding (num_threads=1)
 - Shape: torch.Size([5, 3, 240, 320])
 - Processed 900 frames in 0.50 seconds. (1814.82 fps)
* Software decoding (num_threads=4)
 - Shape: torch.Size([5, 3, 240, 320])
 - Processed 900 frames in 0.34 seconds. (2679.88 fps)
* Software decoding (num_threads=8)
 - Shape: torch.Size([5, 3, 240, 320])
 - Processed 900 frames in 0.34 seconds. (2674.27 fps)
* Software decoding (num_threads=16)
 - Shape: torch.Size([5, 3, 240, 320])
 - Processed 895 frames in 0.43 seconds. (2088.70 fps)
* Hardware decoding
 - Shape: torch.Size([5, 3, 240, 320])
 - Processed 900 frames in 2.01 seconds. (447.36 fps)

VGA

src_vga = torchaudio.utils.download_asset("tutorial-assets/testsrc2_vga.h264.mp4")
fps_vga = run_decode_tests(src_vga)
  0%|          | 0.00/3.59M [00:00<?, ?B/s]
 59%|#####9    | 2.12M/3.59M [00:00<00:00, 10.0MB/s]
100%|##########| 3.59M/3.59M [00:00<00:00, 16.3MB/s]
Testing: testsrc2_vga.h264.mp4
* Software decoding (num_threads=1)
 - Shape: torch.Size([5, 3, 480, 640])
 - Processed 900 frames in 1.20 seconds. (749.76 fps)
* Software decoding (num_threads=4)
 - Shape: torch.Size([5, 3, 480, 640])
 - Processed 900 frames in 0.71 seconds. (1274.24 fps)
* Software decoding (num_threads=8)
 - Shape: torch.Size([5, 3, 480, 640])
 - Processed 900 frames in 0.70 seconds. (1285.18 fps)
* Software decoding (num_threads=16)
 - Shape: torch.Size([5, 3, 480, 640])
 - Processed 895 frames in 0.64 seconds. (1402.77 fps)
* Hardware decoding
 - Shape: torch.Size([5, 3, 480, 640])
 - Processed 900 frames in 0.34 seconds. (2639.80 fps)

XGA

src_xga = torchaudio.utils.download_asset("tutorial-assets/testsrc2_xga.h264.mp4")
fps_xga = run_decode_tests(src_xga)
  0%|          | 0.00/9.22M [00:00<?, ?B/s]
 98%|#########7| 9.00M/9.22M [00:00<00:00, 35.8MB/s]
100%|##########| 9.22M/9.22M [00:00<00:00, 36.4MB/s]
Testing: testsrc2_xga.h264.mp4
* Software decoding (num_threads=1)
 - Shape: torch.Size([5, 3, 768, 1024])
 - Processed 900 frames in 2.70 seconds. (333.73 fps)
* Software decoding (num_threads=4)
 - Shape: torch.Size([5, 3, 768, 1024])
 - Processed 900 frames in 1.38 seconds. (652.84 fps)
* Software decoding (num_threads=8)
 - Shape: torch.Size([5, 3, 768, 1024])
 - Processed 900 frames in 1.28 seconds. (703.55 fps)
* Software decoding (num_threads=16)
 - Shape: torch.Size([5, 3, 768, 1024])
 - Processed 895 frames in 1.30 seconds. (690.26 fps)
* Hardware decoding
 - Shape: torch.Size([5, 3, 768, 1024])
 - Processed 900 frames in 0.61 seconds. (1473.92 fps)

结果

现在我们绘制结果。

def plot():
    fig, ax = plt.subplots(figsize=[9.6, 6.4])

    for items in zip(fps_qvga, fps_vga, fps_xga, "ov^sx"):
        ax.plot(items[:-1], marker=items[-1])
    ax.grid(axis="both")
    ax.set_xticks([0, 1, 2], ["QVGA (320x240)", "VGA (640x480)", "XGA (1024x768)"])
    ax.legend(
        [
            "Software Decoding (threads=1)",
            "Software Decoding (threads=4)",
            "Software Decoding (threads=8)",
            "Software Decoding (threads=16)",
            "Hardware Decoding (CUDA Tensor)",
        ]
    )
    ax.set_title("Speed of processing video frames")
    ax.set_ylabel("Frames per second")
    plt.tight_layout()


plot()
Speed of processing video frames

我们观察到一些事情

  • 在软件解码中增加线程数会使管道更快,但性能在大约 8 个线程附近饱和。

  • 使用硬件解码器带来的性能提升取决于视频的分辨率。

  • 在较低分辨率(如 QVGA)下,硬件解码比软件解码慢。

  • 在较高分辨率(如 XGA)下,硬件解码比软件解码快。

值得注意的是,性能提升也取决于 GPU 类型。我们观察到,在使用 V100 或 A100 GPU 解码 VGA 视频时,硬件解码器比软件解码器慢。但使用 A10 GPU 硬件解码器比软件解码器快。

解码和调整大小

接下来,我们向管道中添加调整大小操作。我们将比较以下管道。

  1. 使用软件解码器解码视频,并将帧读取为 PyTorch 张量。使用 torch.nn.functional.interpolate() 调整张量大小,然后将结果张量发送到 CUDA 设备。

  2. 使用软件解码器解码视频,使用 FFmpeg 的过滤器图调整帧大小,将调整大小后的帧读取为 PyTorch 张量,然后将其发送到 CUDA 设备。

  3. 使用 HW 解码器同时解码和调整大小视频,将结果帧读取为 CUDA 张量。

管道 1 代表常见的视频加载实现。

管道 2 使用 FFmpeg 的过滤器图,该图允许在将原始帧转换为张量之前对其进行操作。

管道 3 具有最少的 CPU 到 CUDA 的数据传输量,这极大地促进了高性能数据加载。

以下函数实现了管道 1。它使用 PyTorch 的 torch.nn.functional.interpolate()。我们使用 bincubic 模式,因为我们发现结果帧最接近 NVDEC 调整大小。

def test_decode_then_resize(src, height, width, mode="bicubic", frames_per_chunk=5):
    s = StreamReader(src)
    s.add_video_stream(frames_per_chunk, decoder_option={"threads": "8"})

    num_frames = 0
    device = torch.device("cuda")
    chunk = None
    t0 = time.monotonic()
    for (chunk,) in s.stream():
        num_frames += chunk.shape[0]
        chunk = torch.nn.functional.interpolate(chunk, [height, width], mode=mode, antialias=True)
        chunk = chunk.to(device)
    elapsed = time.monotonic() - t0
    fps = num_frames / elapsed
    print(f" - Shape: {chunk.shape}")
    print(f" - Processed {num_frames} frames in {elapsed:.2f} seconds. ({fps:.2f} fps)")
    return fps

以下函数实现了管道 2。帧在解码过程中调整大小,然后发送到 CUDA 设备。

我们使用 bincubic 模式,使结果与上面的基于 PyTorch 的实现相比较。

def test_decode_and_resize(src, height, width, mode="bicubic", frames_per_chunk=5):
    s = StreamReader(src)
    s.add_video_stream(
        frames_per_chunk, filter_desc=f"scale={width}:{height}:sws_flags={mode}", decoder_option={"threads": "8"}
    )

    num_frames = 0
    device = torch.device("cuda")
    chunk = None
    t0 = time.monotonic()
    for (chunk,) in s.stream():
        num_frames += chunk.shape[0]
        chunk = chunk.to(device)
    elapsed = time.monotonic() - t0
    fps = num_frames / elapsed
    print(f" - Shape: {chunk.shape}")
    print(f" - Processed {num_frames} frames in {elapsed:.2f} seconds. ({fps:.2f} fps)")
    return fps

以下函数实现了管道 3。调整大小由 NVDEC 执行,结果张量被放置在 CUDA 内存中。

def test_hw_decode_and_resize(src, decoder, decoder_option, hw_accel="cuda", frames_per_chunk=5):
    s = StreamReader(src)
    s.add_video_stream(5, decoder=decoder, decoder_option=decoder_option, hw_accel=hw_accel)

    num_frames = 0
    chunk = None
    t0 = time.monotonic()
    for (chunk,) in s.stream():
        num_frames += chunk.shape[0]
    elapsed = time.monotonic() - t0
    fps = num_frames / elapsed
    print(f" - Shape: {chunk.shape}")
    print(f" - Processed {num_frames} frames in {elapsed:.2f} seconds. ({fps:.2f} fps)")
    return fps

以下函数在给定源上运行基准测试函数。

def run_resize_tests(src):
    print(f"Testing: {os.path.basename(src)}")
    height, width = 224, 224
    print("* Software decoding with PyTorch interpolate")
    cpu_resize1 = test_decode_then_resize(src, height=height, width=width)
    print("* Software decoding with FFmpeg scale")
    cpu_resize2 = test_decode_and_resize(src, height=height, width=width)
    print("* Hardware decoding with resize")
    cuda_resize = test_hw_decode_and_resize(src, decoder="h264_cuvid", decoder_option={"resize": f"{width}x{height}"})
    return [cpu_resize1, cpu_resize2, cuda_resize]

现在我们运行测试。

QVGA

fps_qvga = run_resize_tests(src_qvga)
Testing: testsrc2_qvga.h264.mp4
* Software decoding with PyTorch interpolate
 - Shape: torch.Size([5, 3, 224, 224])
 - Processed 900 frames in 0.61 seconds. (1486.29 fps)
* Software decoding with FFmpeg scale
 - Shape: torch.Size([5, 3, 224, 224])
 - Processed 900 frames in 0.40 seconds. (2229.01 fps)
* Hardware decoding with resize
 - Shape: torch.Size([5, 3, 224, 224])
 - Processed 900 frames in 2.02 seconds. (444.56 fps)

VGA

fps_vga = run_resize_tests(src_vga)
Testing: testsrc2_vga.h264.mp4
* Software decoding with PyTorch interpolate
 - Shape: torch.Size([5, 3, 224, 224])
 - Processed 900 frames in 1.45 seconds. (620.26 fps)
* Software decoding with FFmpeg scale
 - Shape: torch.Size([5, 3, 224, 224])
 - Processed 900 frames in 0.69 seconds. (1300.24 fps)
* Hardware decoding with resize
 - Shape: torch.Size([5, 3, 224, 224])
 - Processed 900 frames in 0.34 seconds. (2653.73 fps)

XGA

fps_xga = run_resize_tests(src_xga)
Testing: testsrc2_xga.h264.mp4
* Software decoding with PyTorch interpolate
 - Shape: torch.Size([5, 3, 224, 224])
 - Processed 900 frames in 2.69 seconds. (334.90 fps)
* Software decoding with FFmpeg scale
 - Shape: torch.Size([5, 3, 224, 224])
 - Processed 900 frames in 1.06 seconds. (850.30 fps)
* Hardware decoding with resize
 - Shape: torch.Size([5, 3, 224, 224])
 - Processed 900 frames in 0.61 seconds. (1476.55 fps)

结果

现在我们绘制结果。

def plot():
    fig, ax = plt.subplots(figsize=[9.6, 6.4])

    for items in zip(fps_qvga, fps_vga, fps_xga, "ov^sx"):
        ax.plot(items[:-1], marker=items[-1])
    ax.grid(axis="both")
    ax.set_xticks([0, 1, 2], ["QVGA (320x240)", "VGA (640x480)", "XGA (1024x768)"])
    ax.legend(
        [
            "Software decoding\nwith resize\n(PyTorch interpolate)",
            "Software decoding\nwith resize\n(FFmpeg scale)",
            "NVDEC\nwith resizing",
        ]
    )
    ax.set_title("Speed of processing video frames")
    ax.set_xlabel("Input video resolution")
    ax.set_ylabel("Frames per second")
    plt.tight_layout()


plot()
Speed of processing video frames

硬件解码器显示出与之前的实验类似的趋势。实际上,性能几乎相同。硬件调整大小在缩小帧时几乎没有开销。

软件解码也显示出类似的趋势。将调整大小作为解码的一部分进行更快。一种可能的解释是,视频帧在内部存储为 YUV420P,与 RGB24 或 YUV444P 相比,像素数量减少了一半。这意味着,如果在将帧数据复制到 PyTorch 张量之前进行调整大小,则与在将帧转换为张量后应用调整大小的情况相比,操作和复制的像素数量更少。

标签:torchaudio.io

脚本的总运行时间:(0 分钟 31.872 秒)

由 Sphinx-Gallery 生成的画廊

文档

访问 PyTorch 的全面开发人员文档

查看文档

教程

获得针对初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源