• 文档 >
  • 使用 Tacotron2 进行语音合成 >
  • 旧版本 (稳定版)
快捷方式

使用 Tacotron2 进行语音合成

**作者**:杨尧元平本元

概述

本教程演示了如何使用 torchaudio 中预训练的 Tacotron2 构建文本到语音管道。

文本到语音管道的工作流程如下

  1. 文本预处理

    首先,输入文本被编码成一个符号列表。在本教程中,我们将使用英文字符和音素作为符号。

  2. 频谱图生成

    从编码后的文本生成频谱图。我们使用 Tacotron2 模型来完成此操作。

  3. 时域转换

    最后一步是将频谱图转换为波形。从频谱图生成语音的过程也称为声码器。在本教程中,使用了三种不同的声码器:WaveRNNGriffinLimNvidia 的 WaveGlow

下图说明了整个过程。

https://download.pytorch.org/torchaudio/tutorial-assets/tacotron2_tts_pipeline.png

所有相关组件都打包在 torchaudio.pipelines.Tacotron2TTSBundle 中,但本教程也将介绍底层过程。

准备

首先,我们安装必要的依赖项。除了 torchaudio 之外,还需要 DeepPhonemizer 来执行基于音素的编码。

%%bash
pip3 install deep_phonemizer
import torch
import torchaudio

torch.random.manual_seed(0)
device = "cuda" if torch.cuda.is_available() else "cpu"

print(torch.__version__)
print(torchaudio.__version__)
print(device)
2.5.0
2.5.0
cuda
import IPython
import matplotlib.pyplot as plt

文本处理

基于字符的编码

在本节中,我们将了解基于字符的编码是如何工作的。

由于预训练的 Tacotron2 模型期望特定的符号表集,因此 torchaudio 中提供了相同的功能。但是,我们将首先手动实现编码以帮助理解。

首先,我们定义符号集 '_-!\'(),.:;? abcdefghijklmnopqrstuvwxyz'。然后,我们将输入文本的每个字符映射到表中对应符号的索引。表中不存在的符号将被忽略。

symbols = "_-!'(),.:;? abcdefghijklmnopqrstuvwxyz"
look_up = {s: i for i, s in enumerate(symbols)}
symbols = set(symbols)


def text_to_sequence(text):
    text = text.lower()
    return [look_up[s] for s in text if s in symbols]


text = "Hello world! Text to speech!"
print(text_to_sequence(text))
[19, 16, 23, 23, 26, 11, 34, 26, 29, 23, 15, 2, 11, 31, 16, 35, 31, 11, 31, 26, 11, 30, 27, 16, 16, 14, 19, 2]

如上所述,符号表和索引必须与预训练的 Tacotron2 模型期望的匹配。torchaudio 随预训练模型一起提供了相同的转换。您可以按如下方式实例化和使用此转换。

processor = torchaudio.pipelines.TACOTRON2_WAVERNN_CHAR_LJSPEECH.get_text_processor()

text = "Hello world! Text to speech!"
processed, lengths = processor(text)

print(processed)
print(lengths)
tensor([[19, 16, 23, 23, 26, 11, 34, 26, 29, 23, 15,  2, 11, 31, 16, 35, 31, 11,
         31, 26, 11, 30, 27, 16, 16, 14, 19,  2]])
tensor([28], dtype=torch.int32)

注意:我们手动编码的输出和 torchaudiotext_processor 输出相匹配(这意味着我们正确地重新实现了库内部执行的操作)。它接受文本或文本列表作为输入。当提供文本列表时,返回的 lengths 变量表示输出批次中每个处理过的标记的有效长度。

可以按如下方式检索中间表示

print([processor.tokens[i] for i in processed[0, : lengths[0]]])
['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', ' ', 't', 'e', 'x', 't', ' ', 't', 'o', ' ', 's', 'p', 'e', 'e', 'c', 'h', '!']

基于音素的编码

基于音素的编码类似于基于字符的编码,但它使用基于音素的符号表和 G2P(音素到字符)模型。

G2P 模型的细节不在本教程的范围内,我们只看一下转换的样子。

与基于字符的编码类似,编码过程应与预训练的 Tacotron2 模型训练时使用的过程相匹配。torchaudio 提供了一个创建此过程的接口。

以下代码说明了如何创建和使用此过程。在幕后,使用 DeepPhonemizer 包创建了一个 G2P 模型,并获取了 DeepPhonemizer 作者发布的预训练权重。

bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH

processor = bundle.get_text_processor()

text = "Hello world! Text to speech!"
with torch.inference_mode():
    processed, lengths = processor(text)

print(processed)
print(lengths)
  0%|          | 0.00/63.6M [00:00<?, ?B/s]
  0%|          | 128k/63.6M [00:00<01:32, 722kB/s]
  1%|          | 384k/63.6M [00:00<00:57, 1.15MB/s]
  2%|2         | 1.50M/63.6M [00:00<00:18, 3.59MB/s]
  8%|7         | 4.88M/63.6M [00:00<00:05, 12.0MB/s]
 14%|#3        | 8.62M/63.6M [00:00<00:03, 16.3MB/s]
 20%|#9        | 12.6M/63.6M [00:00<00:02, 22.6MB/s]
 27%|##7       | 17.2M/63.6M [00:01<00:01, 24.7MB/s]
 33%|###3      | 21.1M/63.6M [00:01<00:01, 28.1MB/s]
 41%|####      | 26.0M/63.6M [00:01<00:01, 29.0MB/s]
 47%|####6     | 29.9M/63.6M [00:01<00:01, 31.2MB/s]
 54%|#####4    | 34.6M/63.6M [00:01<00:00, 30.5MB/s]
 60%|#####9    | 38.1M/63.6M [00:01<00:00, 31.7MB/s]
 68%|######7   | 43.0M/63.6M [00:01<00:00, 36.5MB/s]
 73%|#######3  | 46.8M/63.6M [00:02<00:00, 31.2MB/s]
 79%|#######8  | 50.2M/63.6M [00:02<00:00, 32.5MB/s]
 85%|########5 | 54.4M/63.6M [00:02<00:00, 30.1MB/s]
 92%|#########1| 58.2M/63.6M [00:02<00:00, 32.3MB/s]
 97%|#########7| 61.9M/63.6M [00:02<00:00, 27.7MB/s]
100%|##########| 63.6M/63.6M [00:02<00:00, 25.0MB/s]
/pytorch/audio/ci_env/lib/python3.10/site-packages/dp/model/model.py:306: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  checkpoint = torch.load(checkpoint_path, map_location=device)
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/nn/modules/transformer.py:379: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)
  warnings.warn(
tensor([[54, 20, 65, 69, 11, 92, 44, 65, 38,  2, 11, 81, 40, 64, 79, 81, 11, 81,
         20, 11, 79, 77, 59, 37,  2]])
tensor([25], dtype=torch.int32)

请注意,编码后的值与基于字符的编码示例不同。

中间表示如下所示。

print([processor.tokens[i] for i in processed[0, : lengths[0]]])
['HH', 'AH', 'L', 'OW', ' ', 'W', 'ER', 'L', 'D', '!', ' ', 'T', 'EH', 'K', 'S', 'T', ' ', 'T', 'AH', ' ', 'S', 'P', 'IY', 'CH', '!']

频谱图生成

Tacotron2 是我们用来从编码后的文本生成频谱图的模型。有关模型的详细信息,请参阅 论文

使用预训练权重实例化 Tacotron2 模型很容易,但是,请注意,Tacotron2 模型的输入需要由匹配的文本处理器进行处理。

torchaudio.pipelines.Tacotron2TTSBundle 将匹配的模型和处理器捆绑在一起,以便于创建管道。

有关可用捆绑包及其用法,请参阅 Tacotron2TTSBundle

bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH
processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)

text = "Hello world! Text to speech!"

with torch.inference_mode():
    processed, lengths = processor(text)
    processed = processed.to(device)
    lengths = lengths.to(device)
    spec, _, _ = tacotron2.infer(processed, lengths)


_ = plt.imshow(spec[0].cpu().detach(), origin="lower", aspect="auto")
tacotron2 pipeline tutorial
/pytorch/audio/ci_env/lib/python3.10/site-packages/dp/model/model.py:306: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  checkpoint = torch.load(checkpoint_path, map_location=device)
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/nn/modules/transformer.py:379: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)
  warnings.warn(
Downloading: "https://download.pytorch.org/torchaudio/models/tacotron2_english_phonemes_1500_epochs_wavernn_ljspeech.pth" to /root/.cache/torch/hub/checkpoints/tacotron2_english_phonemes_1500_epochs_wavernn_ljspeech.pth

  0%|          | 0.00/107M [00:00<?, ?B/s]
 14%|#3        | 14.8M/107M [00:00<00:00, 155MB/s]
 27%|##7       | 29.5M/107M [00:00<00:01, 54.3MB/s]
 35%|###5      | 37.8M/107M [00:00<00:01, 51.5MB/s]
 44%|####3     | 46.9M/107M [00:00<00:01, 55.6MB/s]
 50%|####9     | 53.4M/107M [00:01<00:01, 51.0MB/s]
 60%|#####9    | 64.0M/107M [00:01<00:00, 47.1MB/s]
 73%|#######3  | 78.9M/107M [00:01<00:00, 51.7MB/s]
 78%|#######8  | 84.1M/107M [00:01<00:00, 46.9MB/s]
 89%|########9 | 96.0M/107M [00:01<00:00, 48.8MB/s]
100%|#########9| 107M/107M [00:02<00:00, 44.7MB/s]
100%|##########| 107M/107M [00:02<00:00, 49.9MB/s]

请注意,Tacotron2.infer 方法执行多项式采样,因此,生成频谱图的过程会产生随机性。

def plot():
    fig, ax = plt.subplots(3, 1)
    for i in range(3):
        with torch.inference_mode():
            spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
        print(spec[0].shape)
        ax[i].imshow(spec[0].cpu().detach(), origin="lower", aspect="auto")


plot()
tacotron2 pipeline tutorial
torch.Size([80, 190])
torch.Size([80, 184])
torch.Size([80, 185])

波形生成

生成频谱图后,最后一个过程是使用声码器从频谱图中恢复波形。

torchaudio 提供了基于 GriffinLimWaveRNN 的声码器。

WaveRNN 声码器

从上一节继续,我们可以从同一个捆绑包中实例化匹配的 WaveRNN 模型。

bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH

processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)
vocoder = bundle.get_vocoder().to(device)

text = "Hello world! Text to speech!"

with torch.inference_mode():
    processed, lengths = processor(text)
    processed = processed.to(device)
    lengths = lengths.to(device)
    spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
    waveforms, lengths = vocoder(spec, spec_lengths)
/pytorch/audio/ci_env/lib/python3.10/site-packages/dp/model/model.py:306: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  checkpoint = torch.load(checkpoint_path, map_location=device)
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/nn/modules/transformer.py:379: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)
  warnings.warn(
Downloading: "https://download.pytorch.org/torchaudio/models/wavernn_10k_epochs_8bits_ljspeech.pth" to /root/.cache/torch/hub/checkpoints/wavernn_10k_epochs_8bits_ljspeech.pth

  0%|          | 0.00/16.7M [00:00<?, ?B/s]
 89%|########9 | 14.9M/16.7M [00:00<00:00, 65.0MB/s]
100%|##########| 16.7M/16.7M [00:00<00:00, 46.2MB/s]
def plot(waveforms, spec, sample_rate):
    waveforms = waveforms.cpu().detach()

    fig, [ax1, ax2] = plt.subplots(2, 1)
    ax1.plot(waveforms[0])
    ax1.set_xlim(0, waveforms.size(-1))
    ax1.grid(True)
    ax2.imshow(spec[0].cpu().detach(), origin="lower", aspect="auto")
    return IPython.display.Audio(waveforms[0:1], rate=sample_rate)


plot(waveforms, spec, vocoder.sample_rate)
tacotron2 pipeline tutorial


Griffin-Lim 声码器

使用 Griffin-Lim 声码器与 WaveRNN 相同。您可以使用 get_vocoder() 方法实例化声码器对象并传入频谱图。

bundle = torchaudio.pipelines.TACOTRON2_GRIFFINLIM_PHONE_LJSPEECH

processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)
vocoder = bundle.get_vocoder().to(device)

with torch.inference_mode():
    processed, lengths = processor(text)
    processed = processed.to(device)
    lengths = lengths.to(device)
    spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
waveforms, lengths = vocoder(spec, spec_lengths)
/pytorch/audio/ci_env/lib/python3.10/site-packages/dp/model/model.py:306: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  checkpoint = torch.load(checkpoint_path, map_location=device)
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/nn/modules/transformer.py:379: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)
  warnings.warn(
Downloading: "https://download.pytorch.org/torchaudio/models/tacotron2_english_phonemes_1500_epochs_ljspeech.pth" to /root/.cache/torch/hub/checkpoints/tacotron2_english_phonemes_1500_epochs_ljspeech.pth

  0%|          | 0.00/107M [00:00<?, ?B/s]
 14%|#3        | 14.9M/107M [00:00<00:01, 65.9MB/s]
 20%|#9        | 21.2M/107M [00:00<00:01, 54.3MB/s]
 30%|##9       | 32.0M/107M [00:00<00:01, 60.0MB/s]
 44%|####3     | 46.9M/107M [00:00<00:01, 60.9MB/s]
 49%|####8     | 52.6M/107M [00:01<00:01, 38.2MB/s]
 59%|#####8    | 63.2M/107M [00:01<00:00, 50.0MB/s]
 65%|######4   | 69.8M/107M [00:01<00:00, 46.5MB/s]
 74%|#######4  | 80.0M/107M [00:01<00:00, 48.0MB/s]
 88%|########8 | 94.9M/107M [00:01<00:00, 59.6MB/s]
 94%|#########4| 101M/107M [00:02<00:00, 39.2MB/s]
 99%|#########8| 106M/107M [00:02<00:00, 38.5MB/s]
100%|##########| 107M/107M [00:02<00:00, 42.2MB/s]
plot(waveforms, spec, vocoder.sample_rate)
tacotron2 pipeline tutorial


Waveglow 声码器

Waveglow 是 Nvidia 发布的一种声码器。预训练权重已发布在 Torch Hub 上。可以使用 torch.hub 模块实例化模型。

# Workaround to load model mapped on GPU
# https://stackoverflow.com/a/61840832
waveglow = torch.hub.load(
    "NVIDIA/DeepLearningExamples:torchhub",
    "nvidia_waveglow",
    model_math="fp32",
    pretrained=False,
)
checkpoint = torch.hub.load_state_dict_from_url(
    "https://api.ngc.nvidia.com/v2/models/nvidia/waveglowpyt_fp32/versions/1/files/nvidia_waveglowpyt_fp32_20190306.pth",  # noqa: E501
    progress=False,
    map_location=device,
)
state_dict = {key.replace("module.", ""): value for key, value in checkpoint["state_dict"].items()}

waveglow.load_state_dict(state_dict)
waveglow = waveglow.remove_weightnorm(waveglow)
waveglow = waveglow.to(device)
waveglow.eval()

with torch.no_grad():
    waveforms = waveglow.infer(spec)
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/hub.py:330: UserWarning: You are about to download and run code from an untrusted repository. In a future release, this won't be allowed. To add the repository to your trusted list, change the command to {calling_fn}(..., trust_repo=False) and a command prompt will appear asking for an explicit confirmation of trust, or load(..., trust_repo=True), which will assume that the prompt is to be answered with 'yes'. You can also use load(..., trust_repo='check') which will only prompt for confirmation if the repo is not already trusted. This will eventually be the default behaviour
  warnings.warn(
Downloading: "https://github.com/NVIDIA/DeepLearningExamples/zipball/torchhub" to /root/.cache/torch/hub/torchhub.zip
/root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub/PyTorch/Classification/ConvNets/image_classification/models/common.py:13: UserWarning: pytorch_quantization module not found, quantization will not be available
  warnings.warn(
/root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub/PyTorch/Classification/ConvNets/image_classification/models/efficientnet.py:17: UserWarning: pytorch_quantization module not found, quantization will not be available
  warnings.warn(
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/nn/utils/weight_norm.py:143: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`.
  WeightNorm.apply(module, name, dim)
Downloading: "https://api.ngc.nvidia.com/v2/models/nvidia/waveglowpyt_fp32/versions/1/files/nvidia_waveglowpyt_fp32_20190306.pth" to /root/.cache/torch/hub/checkpoints/nvidia_waveglowpyt_fp32_20190306.pth
plot(waveforms, spec, 22050)
tacotron2 pipeline tutorial


脚本总运行时间:(1 分 13.712 秒)

由 Sphinx-Gallery 生成的图库

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源