torchaudio.sox_effects.apply_effects_tensor¶
- torchaudio.sox_effects.apply_effects_tensor(tensor: Tensor, sample_rate: int, effects: List[List[str]], channels_first: bool = True) Tuple[Tensor, int] [source]¶
将 sox 效果应用于给定的张量
注意
此函数仅适用于 CPU 张量。此函数的工作方式与
sox
命令非常相似,但存在细微差异。例如,sox
命令会自动添加某些效果(例如,在speed
和pitch
以及其他效果之后添加rate
效果),但此函数仅应用给定的效果。(因此,要实际应用speed
效果,您还需要使用所需的采样率提供rate
效果。)- 参数:
tensor (torch.Tensor) – 输入 2D CPU 张量。
sample_rate (int) – 采样率
effects (List[List[str]]) – 效果列表。
channels_first (bool, 可选) – 指示输入张量的维度是 [channels, time] 还是 [time, channels]
- 返回值:
结果张量和采样率。结果张量与输入张量具有相同的
dtype
和相同的通道顺序。张量的形状可以根据应用的效果而有所不同。采样率也可以根据应用的效果而有所不同。- 返回类型:
(Tensor, int)
- 示例 - 基本用法
>>> >>> # Defines the effects to apply >>> effects = [ ... ['gain', '-n'], # normalises to 0dB ... ['pitch', '5'], # 5 cent pitch shift ... ['rate', '8000'], # resample to 8000 Hz ... ] >>> >>> # Generate pseudo wave: >>> # normalized, channels first, 2ch, sampling rate 16000, 1 second >>> sample_rate = 16000 >>> waveform = 2 * torch.rand([2, sample_rate * 1]) - 1 >>> waveform.shape torch.Size([2, 16000]) >>> waveform tensor([[ 0.3138, 0.7620, -0.9019, ..., -0.7495, -0.4935, 0.5442], [-0.0832, 0.0061, 0.8233, ..., -0.5176, -0.9140, -0.2434]]) >>> >>> # Apply effects >>> waveform, sample_rate = apply_effects_tensor( ... wave_form, sample_rate, effects, channels_first=True) >>> >>> # Check the result >>> # The new waveform is sampling rate 8000, 1 second. >>> # normalization and channel order are preserved >>> waveform.shape torch.Size([2, 8000]) >>> waveform tensor([[ 0.5054, -0.5518, -0.4800, ..., -0.0076, 0.0096, -0.0110], [ 0.1331, 0.0436, -0.3783, ..., -0.0035, 0.0012, 0.0008]]) >>> sample_rate 8000
- 示例 - 可 Torchscript 化的转换
>>> >>> # Use `apply_effects_tensor` in `torch.nn.Module` and dump it to file, >>> # then run sox effect via Torchscript runtime. >>> >>> class SoxEffectTransform(torch.nn.Module): ... effects: List[List[str]] ... ... def __init__(self, effects: List[List[str]]): ... super().__init__() ... self.effects = effects ... ... def forward(self, tensor: torch.Tensor, sample_rate: int): ... return sox_effects.apply_effects_tensor( ... tensor, sample_rate, self.effects) ... ... >>> # Create transform object >>> effects = [ ... ["lowpass", "-1", "300"], # apply single-pole lowpass filter ... ["rate", "8000"], # change sample rate to 8000 ... ] >>> transform = SoxEffectTensorTransform(effects, input_sample_rate) >>> >>> # Dump it to file and load >>> path = 'sox_effect.zip' >>> torch.jit.script(trans).save(path) >>> transform = torch.jit.load(path) >>> >>>> # Run transform >>> waveform, input_sample_rate = torchaudio.load("input.wav") >>> waveform, sample_rate = transform(waveform, input_sample_rate) >>> assert sample_rate == 8000