快捷方式

RNNTBundle

class torchaudio.pipelines.RNNTBundle[source]

用于使用 RNN-T 模型执行自动语音识别(ASR,语音转文本)推理的组件捆绑类。

更具体地说,该类提供了生成特征提取流水线、包装指定 RNN-T 模型的解码器以及输出标记后处理程序的方法,这些方法共同构成一个完整的端到端 ASR 推理流水线,该流水线在给定原始波形的情况下生成文本序列。

它可以支持非流式(全上下文)推理以及流式推理。

用户不应直接实例化此类的对象;相反,用户应该使用模块中存在的实例(表示预训练模型),例如 torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH

示例
>>> import torchaudio
>>> from torchaudio.pipelines import EMFORMER_RNNT_BASE_LIBRISPEECH
>>> import torch
>>>
>>> # Non-streaming inference.
>>> # Build feature extractor, decoder with RNN-T model, and token processor.
>>> feature_extractor = EMFORMER_RNNT_BASE_LIBRISPEECH.get_feature_extractor()
100%|███████████████████████████████| 3.81k/3.81k [00:00<00:00, 4.22MB/s]
>>> decoder = EMFORMER_RNNT_BASE_LIBRISPEECH.get_decoder()
Downloading: "https://download.pytorch.org/torchaudio/models/emformer_rnnt_base_librispeech.pt"
100%|███████████████████████████████| 293M/293M [00:07<00:00, 42.1MB/s]
>>> token_processor = EMFORMER_RNNT_BASE_LIBRISPEECH.get_token_processor()
100%|███████████████████████████████| 295k/295k [00:00<00:00, 25.4MB/s]
>>>
>>> # Instantiate LibriSpeech dataset; retrieve waveform for first sample.
>>> dataset = torchaudio.datasets.LIBRISPEECH("/home/librispeech", url="test-clean")
>>> waveform = next(iter(dataset))[0].squeeze()
>>>
>>> with torch.no_grad():
>>>     # Produce mel-scale spectrogram features.
>>>     features, length = feature_extractor(waveform)
>>>
>>>     # Generate top-10 hypotheses.
>>>     hypotheses = decoder(features, length, 10)
>>>
>>> # For top hypothesis, convert predicted tokens to text.
>>> text = token_processor(hypotheses[0][0])
>>> print(text)
he hoped there would be stew for dinner turnips and carrots and bruised potatoes and fat mutton pieces to [...]
>>>
>>>
>>> # Streaming inference.
>>> hop_length = EMFORMER_RNNT_BASE_LIBRISPEECH.hop_length
>>> num_samples_segment = EMFORMER_RNNT_BASE_LIBRISPEECH.segment_length * hop_length
>>> num_samples_segment_right_context = (
>>>     num_samples_segment + EMFORMER_RNNT_BASE_LIBRISPEECH.right_context_length * hop_length
>>> )
>>>
>>> # Build streaming inference feature extractor.
>>> streaming_feature_extractor = EMFORMER_RNNT_BASE_LIBRISPEECH.get_streaming_feature_extractor()
>>>
>>> # Process same waveform as before, this time sequentially across overlapping segments
>>> # to simulate streaming inference. Note the usage of ``streaming_feature_extractor`` and ``decoder.infer``.
>>> state, hypothesis = None, None
>>> for idx in range(0, len(waveform), num_samples_segment):
>>>     segment = waveform[idx: idx + num_samples_segment_right_context]
>>>     segment = torch.nn.functional.pad(segment, (0, num_samples_segment_right_context - len(segment)))
>>>     with torch.no_grad():
>>>         features, length = streaming_feature_extractor(segment)
>>>         hypotheses, state = decoder.infer(features, length, 10, state=state, hypothesis=hypothesis)
>>>     hypothesis = hypotheses[0]
>>>     transcript = token_processor(hypothesis[0])
>>>     if transcript:
>>>         print(transcript, end=" ", flush=True)
he hoped there would be stew for dinner turn ips and car rots and bru 'd oes and fat mut ton pieces to [...]
使用 RNNTBundle 的教程
Online ASR with Emformer RNN-T

使用 Emformer RNN-T 进行在线 ASR

使用 Emformer RNN-T 进行在线 ASR
Device ASR with Emformer RNN-T

使用 Emformer RNN-T 进行设备端 ASR

使用 Emformer RNN-T 进行设备端 ASR

属性

hop_length

property RNNTBundle.hop_length: int

模型期望的输入中连续帧之间的样本数。

类型:

int

n_fft

property RNNTBundle.n_fft: int

要使用的 FFT 窗口的大小。

类型:

int

n_mels

property RNNTBundle.n_mels: int

从输入波形中提取的梅尔谱图特征的数量。

类型:

int

right_context_length

property RNNTBundle.right_context_length: int

模型期望的输入中右侧上下文块中的帧数。

类型:

int

sample_rate

property RNNTBundle.sample_rate: int

输入波形的采样率(以每秒周期计)。

类型:

int

segment_length

property RNNTBundle.segment_length: int

模型期望的输入中段的帧数。

类型:

int

方法

get_decoder

RNNTBundle.get_decoder() RNNTBeamSearch[source]

构建 RNN-T 解码器。

返回值:

RNNTBeamSearch

get_feature_extractor

RNNTBundle.get_feature_extractor() FeatureExtractor[source]

构建用于非流式(全上下文)ASR 的特征提取器。

返回值:

FeatureExtractor

get_streaming_feature_extractor

RNNTBundle.get_streaming_feature_extractor() FeatureExtractor[source]

构建用于流式(同步)ASR 的特征提取器。

返回值:

FeatureExtractor

get_token_processor

RNNTBundle.get_token_processor() TokenProcessor[source]

构建标记处理器。

返回值:

TokenProcessor

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取针对初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源