CQLLoss¶
- class torchrl.objectives.CQLLoss(*args, **kwargs)[源码]¶
TorchRL 对连续 CQL 损失的实现。
提出于 “Conservative Q-Learning for Offline Reinforcement Learning” https://arxiv.org/abs/2006.04779
- 参数:
actor_network (ProbabilisticActor) – 随机 actor
qvalue_network (TensorDictModule 或 TensorDictModule 列表) –
Q(s, a) 参数模型。此模块通常输出一个
"state_action_value"
条目。如果提供单个 qvalue_network 实例,它将被复制N
次(此损失中N=2
)。如果传递模块列表,除非它们共享同一身份(此时原始参数将被展开),否则它们的参数将被堆叠。警告
当传递参数列表时,它__不会__与策略参数进行比较,并且所有参数将被视为未绑定。
- 关键字参数:
loss_function (str, 可选) – 用于值函数损失的损失函数。默认值为 “smooth_l1”。
alpha_init (
float
, 可选) – 初始熵乘数。默认值为 1.0。min_alpha (
float
, 可选) – alpha 的最小值。默认值为 None(无最小值)。max_alpha (
float
, 可选) – alpha 的最大值。默认值为 None(无最大值)。action_spec (TensorSpec, 可选) – 动作张量规范。如果未提供且目标熵为
"auto"
,它将从 actor 中获取。fixed_alpha (bool, 可选) – 如果
True
,alpha 将固定为其初始值。否则,alpha 将被优化以匹配“target_entropy”值。默认值为False
。target_entropy (
float
或 str, 可选) – 随机策略的目标熵。默认值为 “auto”,此时目标熵计算为-prod(n_actions)
。delay_actor (bool, 可选) – 是否将目标 actor 网络与用于数据收集的 actor 网络分开。默认值为
False
。delay_qvalue (bool, 可选) – 是否将目标 Q 值网络与用于数据收集的 Q 值网络分开。默认值为
True
。gamma (
float
, 可选) – 折扣因子。默认值为None
。temperature (
float
, 可选) – CQL 温度。默认值为 1.0。min_q_weight (
float
, 可选) – 最小 Q 权重。默认值为 1.0。max_q_backup (bool, 可选) – 是否使用 max-min Q backup。默认值为
False
。deterministic_backup (bool, 可选) – 是否使用确定性备份。默认值为
True
。num_random (int, 可选) – 为 CQL 损失采样的随机动作数量。默认值为 10。
with_lagrange (bool, 可选) – 是否使用拉格朗日乘数。默认值为
False
。lagrange_thresh (
float
, 可选) – 拉格朗日阈值。默认值为 0.0。reduction (str, 可选) – 指定应用于输出的 reduction 方式:
"none"
|"mean"
|"sum"
。"none"
:不应用 reduction,"mean"
:输出总和除以输出中的元素数量,"sum"
:对输出求和。默认值:"mean"
。
示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.cql import CQLLoss >>> from tensordict import TensorDict >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor()) >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["loc", "scale"], ... spec=spec, ... distribution_class=TanhNormal) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> qvalue = ValueOperator( ... module=module, ... in_keys=['observation', 'action']) >>> loss = CQLLoss(actor, qvalue) >>> batch = [2, ] >>> action = spec.rand(batch) >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": action, ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1), ... ("next", "observation"): torch.randn(*batch, n_obs), ... }, batch) >>> loss(data) TensorDict( fields={ alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_actor_bc: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_cql: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此类也与非 tensordict 模块兼容,无需使用任何 tensordict 相关原语即可使用。在这种情况下,预期的关键字参数为:
["action", "next_reward", "next_done", "next_terminated"]
+ actor、value 和 qvalue 网络的 in_keys。返回值是一个张量元组,顺序如下:["loss_actor", "loss_qvalue", "loss_alpha", "loss_alpha_prime", "alpha", "entropy"]
。示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.cql import CQLLoss >>> _ = torch.manual_seed(42) >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor()) >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["loc", "scale"], ... spec=spec, ... distribution_class=TanhNormal) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> qvalue = ValueOperator( ... module=module, ... in_keys=['observation', 'action']) >>> loss = CQLLoss(actor, qvalue) >>> batch = [2, ] >>> action = spec.rand(batch) >>> loss_actor, loss_actor_bc, loss_qvalue, loss_cql, *_ = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_observation=torch.zeros(*batch, n_obs), ... next_reward=torch.randn(*batch, 1)) >>> loss_actor.backward()
输出键也可以使用
CQLLoss.select_out_keys()
方法进行过滤。示例
>>> _ = loss.select_out_keys('loss_actor', 'loss_qvalue') >>> loss_actor, loss_qvalue = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_observation=torch.zeros(*batch, n_obs), ... next_reward=torch.randn(*batch, 1)) >>> loss_actor.backward()
- default_keys¶
_AcceptedKeys
的别名
- forward(tensordict: TensorDictBase = None) TensorDictBase [源码]¶
它被设计用于读取输入的 TensorDict 并返回另一个包含以“loss*”命名的损失键的 tensordict。
将其损失分解为各个组成部分后,训练器就可以在整个训练过程中记录各种损失值。输出 tensordict 中存在的其他标量也将被记录。
- 参数:
tensordict – 包含计算损失所需值的输入 tensordict。
- 返回:
一个新的不带 batch 维度的 tensordict,包含各种损失标量,这些标量将命名为“loss*”。这些损失必须以此名称返回,因为训练器将在反向传播之前读取它们。
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[源码]¶
值函数构造函数。
如果需要非默认值函数,则必须使用此方法构建。
- 参数:
value_type (ValueEstimators) – 一个
ValueEstimators
枚举类型,指示要使用的值函数。如果未提供,将使用存储在default_value_estimator
属性中的默认值。结果的值估计器类将注册到self.value_type
中,以便将来进行改进。**hyperparams – 用于值函数的超参数。如果未提供,将使用
default_value_kwargs()
指定的值。
示例
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)