DiscreteCQLLoss¶
- class torchrl.objectives.DiscreteCQLLoss(*args, **kwargs)[源代码]¶
TorchRL 对离散 CQL loss 的实现。
此类实现了离散保守 Q 学习 (CQL) loss 函数,该函数在论文“用于离线强化学习的保守 Q 学习”(Conservative Q-Learning for Offline Reinforcement Learning) (https://arxiv.org/abs/2006.04779) 中提出。
- 参数:
value_network (Union[QValueActor, nn.Module]) – 用于估计状态-动作值的 Q-value 网络。
- 关键字参数:
loss_function (Optional[str]) – 用于计算预测 Q 值与目标 Q 值之间距离的距离函数。默认为
l2
。delay_value (bool) – 是否将目标 Q 值网络与用于数据收集的 Q 值网络分开。默认为
True
。gamma (
float
, optional) – 折扣因子。默认为None
。action_space – 环境的动作空间。如果为 None,则从 value network 推断。默认为 None。
reduction (str, optional) – 指定应用于输出的归约方式:
"none"
|"mean"
|"sum"
。"none"
:不应用归约;"mean"
:输出的总和将被输出元素的数量除;"sum"
:输出将被求和。默认为:"mean"
。
示例
>>> from torchrl.modules import MLP, QValueActor >>> from torchrl.data import OneHot >>> from torchrl.objectives import DiscreteCQLLoss >>> n_obs, n_act = 4, 3 >>> value_net = MLP(in_features=n_obs, out_features=n_act) >>> spec = OneHot(n_act) >>> actor = QValueActor(value_net, in_keys=["observation"], action_space=spec) >>> loss = DiscreteCQLLoss(actor, action_space=spec) >>> batch = [10,] >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": spec.rand(batch), ... ("next", "observation"): torch.randn(*batch, n_obs), ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1) ... }, batch) >>> loss(data) TensorDict( fields={ loss_cql: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), pred_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), td_error: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此类也兼容非 tensordict 的模块,并且可以在不依赖任何 tensordict 相关原语的情况下使用。在这种情况下,预期的关键字参数为:
["observation", "next_observation", "action", "next_reward", "next_done", "next_terminated"]
,并返回一个 loss 值。示例
>>> from torchrl.objectives import DiscreteCQLLoss >>> from torchrl.data import OneHot >>> from torch import nn >>> import torch >>> n_obs = 3 >>> n_action = 4 >>> action_spec = OneHot(n_action) >>> value_network = nn.Linear(n_obs, n_action) # a simple value model >>> dcql_loss = DiscreteCQLLoss(value_network, action_space=action_spec) >>> # define data >>> observation = torch.randn(n_obs) >>> next_observation = torch.randn(n_obs) >>> action = action_spec.rand() >>> next_reward = torch.randn(1) >>> next_done = torch.zeros(1, dtype=torch.bool) >>> next_terminated = torch.zeros(1, dtype=torch.bool) >>> loss_val = dcql_loss( ... observation=observation, ... next_observation=next_observation, ... next_reward=next_reward, ... next_done=next_done, ... next_terminated=next_terminated, ... action=action)
- default_keys¶
的别名
_AcceptedKeys
- forward(tensordict: TensorDictBase = None) TensorDict [源代码]¶
计算从回放缓冲区采样的 tensordict 的 (DQN) CQL loss。
- 此函数还将写入一个“td_error”键,可由优先回放缓冲区用于分配
tensordict 中各项的优先级。
- 参数:
tensordict (TensorDictBase) – 一个 tensordict,包含键 [“action”] 和 value network 的 in_keys(即在“next”tensordict 中的 observations, “done”, “terminated”, “reward”)。
- 返回:
一个包含 CQL loss 的张量。
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[源代码]¶
价值函数构造器。
如果需要非默认价值函数,则必须使用此方法构建。
- 参数:
value_type (ValueEstimators) – 一个
ValueEstimators
枚举类型,指示要使用的价值函数。如果未提供,则将使用存储在default_value_estimator
属性中的默认值。结果的价值估计器类将被注册到self.value_type
中,以便将来进行微调。**hyperparams – 用于价值函数的超参数。如果未提供,则将使用
default_value_kwargs()
指定的值。
示例
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)