快捷方式

DiscreteIQLLoss

class torchrl.objectives.DiscreteIQLLoss(*args, **kwargs)[源代码]

TorchRL 中离散 IQL 损失的实现。

在“具有隐式 Q 学习的离线强化学习”中提出 https://arxiv.org/abs/2110.06169

参数:
  • actor_network (ProbabilisticActor) – 随机执行器

  • qvalue_network (TensorDictModule) – Q(s, a) 参数模型。

  • value_network (TensorDictModule, 可选) – V(s) 参数模型。

关键字参数:
  • action_space (strTensorSpec) – 动作空间。必须是 "one-hot""mult_one_hot""binary""categorical" 之一,或对应规格的实例 (torchrl.data.OneHotDiscreteTensorSpectorchrl.data.MultiOneHotDiscreteTensorSpectorchrl.data.BinaryDiscreteTensorSpectorchrl.data.DiscreteTensorSpec)。

  • num_qvalue_nets (整数, 可选) – 使用的 Q 值网络数量。默认值为 2

  • loss_function (str, 可选) – 用于值函数损失的损失函数。默认值为 “smooth_l1”

  • temperature (浮点数, 可选) – 逆温度 (beta)。对于较小的超参数值,目标函数的行为类似于行为克隆,而对于较大的值,它试图恢复 Q 函数的最大值。

  • expectile (浮点数, 可选) – 期望值 \(\tau\)。较大的 \(\tau\) 值对于需要动态规划(“stichting”)的 antmaze 任务至关重要。

  • priority_key (str, 可选) – [已弃用,请改用 .set_keys(priority_key=priority_key) 而不是] 应该写入优先级 (用于优先级回放缓冲区使用) 的 tensordict 键。默认值为 “td_error”

  • separate_losses (bool, 可选) – 如果为 True,则策略和评论家之间共享的参数将仅在策略损失上进行训练。默认值为 False,即梯度将针对策略和评论家损失传播到共享参数。

  • reduction (str, 可选) – 指定要应用于输出的缩减:"none" | "mean" | "sum""none":不应用任何缩减,"mean":输出的总和将除以输出中元素的数量,"sum":输出将被求和。默认值:"mean"

示例

>>> import torch
>>> from torch import nn
>>> from torchrl.data.tensor_specs import OneHotDiscreteTensorSpec
>>> from torchrl.modules.distributions.discrete import OneHotCategorical
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.iql import DiscreteIQLLoss
>>> from tensordict import TensorDict
>>> n_act, n_obs = 4, 3
>>> spec = OneHotDiscreteTensorSpec(n_act)
>>> module = SafeModule(nn.Linear(n_obs, n_act), in_keys=["observation"], out_keys=["logits"])
>>> actor = ProbabilisticActor(
...     module=module,
...     in_keys=["logits"],
...     out_keys=["action"],
...     spec=spec,
...     distribution_class=OneHotCategorical)
>>> qvalue = SafeModule(
...     nn.Linear(n_obs, n_act),
...     in_keys=["observation"],
...     out_keys=["state_action_value"],
... )
>>> value = SafeModule(
...     nn.Linear(n_obs, 1),
...     in_keys=["observation"],
...     out_keys=["state_value"],
... )
>>> loss = DiscreteIQLLoss(actor, qvalue, value)
>>> batch = [2, ]
>>> action = spec.rand(batch).long()
>>> data = TensorDict({
...         "observation": torch.randn(*batch, n_obs),
...         "action": action,
...         ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool),
...         ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool),
...         ("next", "reward"): torch.randn(*batch, 1),
...         ("next", "observation"): torch.randn(*batch, n_obs),
...     }, batch)
>>> loss(data)
TensorDict(
    fields={
        entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

此类还与非 tensordict 基于的模块兼容,并且可以在不使用任何 tensordict 相关原语的情况下使用。在这种情况下,预期关键字参数为:["action", "next_reward", "next_done", "next_terminated"] + 执行器、值和 q 值网络的 in_keys。返回值是按以下顺序排列的张量元组:["loss_actor", "loss_qvalue", "loss_value", "entropy"]

示例

>>> import torch
>>> import torch
>>> from torch import nn
>>> from torchrl.data.tensor_specs import OneHotDiscreteTensorSpec
>>> from torchrl.modules.distributions.discrete import OneHotCategorical
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.iql import DiscreteIQLLoss
>>> _ = torch.manual_seed(42)
>>> n_act, n_obs = 4, 3
>>> spec = OneHotDiscreteTensorSpec(n_act)
>>> module = SafeModule(nn.Linear(n_obs, n_act), in_keys=["observation"], out_keys=["logits"])
>>> actor = ProbabilisticActor(
...     module=module,
...     in_keys=["logits"],
...     out_keys=["action"],
...     spec=spec,
...     distribution_class=OneHotCategorical)
>>> qvalue = SafeModule(
...     nn.Linear(n_obs, n_act),
...     in_keys=["observation"],
...     out_keys=["state_action_value"],
... )
>>> value = SafeModule(
...     nn.Linear(n_obs, 1),
...     in_keys=["observation"],
...     out_keys=["state_value"],
... )
>>> loss = DiscreteIQLLoss(actor, qvalue, value)
>>> batch = [2, ]
>>> action = spec.rand(batch).long()
>>> loss_actor, loss_qvalue, loss_value, entropy = loss(
...     observation=torch.randn(*batch, n_obs),
...     action=action,
...     next_done=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_observation=torch.zeros(*batch, n_obs),
...     next_reward=torch.randn(*batch, 1))
>>> loss_actor.backward()

还可以使用 DiscreteIQLLoss.select_out_keys() 方法过滤输出键。

示例

>>> _ = loss.select_out_keys('loss_actor', 'loss_qvalue', 'loss_value')
>>> loss_actor, loss_qvalue, loss_value = loss(
...     observation=torch.randn(*batch, n_obs),
...     action=action,
...     next_done=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_observation=torch.zeros(*batch, n_obs),
...     next_reward=torch.randn(*batch, 1))
>>> loss_actor.backward()
forward(tensordict: TensorDictBase) TensorDictBase

它旨在读取输入 TensorDict 并返回另一个包含名为“loss*”的损失键的 tensordict。

将损失分成其组件之后,训练器可以使用它在整个训练过程中记录各种损失值。输出 tensordict 中存在的其他标量也将被记录。

参数:

tensordict – 一个包含计算损失所需的值的输入 tensordict。

返回值:

一个新的没有批量维度的 tensordict,其中包含将被命名为“loss*”的各种损失标量。在反向传播之前,训练器将读取这些损失,因此使用此名称返回损失至关重要。

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取针对初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源