DiscreteIQLLoss¶
- class torchrl.objectives.DiscreteIQLLoss(*args, **kwargs)[源代码]¶
TorchRL 对离散 IQL 损失函数的实现。
选自论文“Offline Reinforcement Learning with Implicit Q-Learning” https://arxiv.org/abs/2110.06169
- 参数:
actor_network (ProbabilisticActor) – 随机策略网络
qvalue_network (TensorDictModule) – Q(s, a) 参数化模型。
value_network (TensorDictModule, optional) – V(s) 参数化模型。
- 关键字参数:
action_space (str or TensorSpec) – 动作空间。必须是
"one-hot"
,"mult_one_hot"
,"binary"
或"categorical"
中的一个,或是相应 spec (torchrl.data.OneHot
,torchrl.data.MultiOneHot
,torchrl.data.Binary
或torchrl.data.Categorical
) 的实例。num_qvalue_nets (integer, optional) – 使用的 Q-Value 网络数量。默认为
2
。loss_function (str, optional) – 用于值函数损失的损失函数。默认为 “smooth_l1”。
temperature (
float
, optional) – 逆温度 (beta)。对于较小的超参数值,目标函数的行为类似于行为克隆;而对于较大的值,它试图恢复 Q 函数的最大值。expectile (
float
, optional) – expectile \(\tau\)。较大的 \(\tau\) 值对于需要动态规划(“stichting”)的 antmaze 任务至关重要。priority_key (str, optional) – [已弃用,请改用 .set_keys(priority_key=priority_key) 代替] 用于写入优先级的 tensordict 键(用于优先经验回放缓冲区)。默认为 “td_error”。
separate_losses (bool, optional) – 如果为
True
,策略和 critic 之间的共享参数将仅通过策略损失进行训练。默认为False
,即梯度会传播到策略和 critic 损失的共享参数。reduction (str, optional) – 指定应用于输出的归约方式:
"none"
|"mean"
|"sum"
。"none"
:不应用归约;"mean"
:输出的总和将除以输出中的元素数量;"sum"
:输出将被求和。默认值:"mean"
。
示例
>>> import torch >>> from torch import nn >>> from torchrl.data.tensor_specs import OneHot >>> from torchrl.modules.distributions.discrete import OneHotCategorical >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.iql import DiscreteIQLLoss >>> from tensordict import TensorDict >>> n_act, n_obs = 4, 3 >>> spec = OneHot(n_act) >>> module = SafeModule(nn.Linear(n_obs, n_act), in_keys=["observation"], out_keys=["logits"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["logits"], ... out_keys=["action"], ... spec=spec, ... distribution_class=OneHotCategorical) >>> qvalue = SafeModule( ... nn.Linear(n_obs, n_act), ... in_keys=["observation"], ... out_keys=["state_action_value"], ... ) >>> value = SafeModule( ... nn.Linear(n_obs, 1), ... in_keys=["observation"], ... out_keys=["state_value"], ... ) >>> loss = DiscreteIQLLoss(actor, qvalue, value) >>> batch = [2, ] >>> action = spec.rand(batch).long() >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": action, ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1), ... ("next", "observation"): torch.randn(*batch, n_obs), ... }, batch) >>> loss(data) TensorDict( fields={ entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此类也兼容非基于 tensordict 的模块,并且无需使用任何 tensordict 相关原语即可使用。在这种情况下,预期的关键字参数为:
["action", "next_reward", "next_done", "next_terminated"]
+ actor、value 和 qvalue 网络的 in_keys。返回值是一个按以下顺序排列的张量元组:["loss_actor", "loss_qvalue", "loss_value", "entropy"]
。示例
>>> import torch >>> import torch >>> from torch import nn >>> from torchrl.data.tensor_specs import OneHot >>> from torchrl.modules.distributions.discrete import OneHotCategorical >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.iql import DiscreteIQLLoss >>> _ = torch.manual_seed(42) >>> n_act, n_obs = 4, 3 >>> spec = OneHot(n_act) >>> module = SafeModule(nn.Linear(n_obs, n_act), in_keys=["observation"], out_keys=["logits"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["logits"], ... out_keys=["action"], ... spec=spec, ... distribution_class=OneHotCategorical) >>> qvalue = SafeModule( ... nn.Linear(n_obs, n_act), ... in_keys=["observation"], ... out_keys=["state_action_value"], ... ) >>> value = SafeModule( ... nn.Linear(n_obs, 1), ... in_keys=["observation"], ... out_keys=["state_value"], ... ) >>> loss = DiscreteIQLLoss(actor, qvalue, value) >>> batch = [2, ] >>> action = spec.rand(batch).long() >>> loss_actor, loss_qvalue, loss_value, entropy = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_observation=torch.zeros(*batch, n_obs), ... next_reward=torch.randn(*batch, 1)) >>> loss_actor.backward()
输出键也可以使用
DiscreteIQLLoss.select_out_keys()
方法进行过滤。示例
>>> _ = loss.select_out_keys('loss_actor', 'loss_qvalue', 'loss_value') >>> loss_actor, loss_qvalue, loss_value = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_observation=torch.zeros(*batch, n_obs), ... next_reward=torch.randn(*batch, 1)) >>> loss_actor.backward()
- default_keys¶
_AcceptedKeys
的别名
- forward(tensordict: TensorDictBase = None) TensorDictBase ¶
它旨在读取输入的 TensorDict 并返回另一个包含名为“loss*”的损失键的 tensordict。
将损失分解到其组成部分,然后训练器可以使用这些组件来记录训练过程中的各种损失值。输出 tensordict 中存在的其他标量值也将被记录。
- 参数:
tensordict – 包含计算损失所需值的输入 tensordict。
- 返回值:
一个不包含批处理维度的新 tensordict,其中包含各种损失标量,这些标量将命名为“loss*”。将损失值以这个名称返回至关重要,因为训练器会在反向传播之前读取它们。