快捷方式

PrioritizedSampler

class torchrl.data.replay_buffers.PrioritizedSampler(max_capacity: int, alpha: float, beta: float, eps: float = 1e-08, dtype: dtype = torch.float32, reduction: str = 'max', max_priority_within_buffer: bool = False)[source]

回放缓冲区的优先级采样器。

在“Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D. 2015. 优先体验回放。”中提出。 (https://arxiv.org/abs/1511.05952)

参数:
  • max_capacity (int) – 缓冲区的最大容量。

  • alpha (float) – 指数 α 决定使用多少优先级,α = 0 对应于均匀情况。

  • beta (float) – 重要性采样负指数。

  • eps (float, 可选) – 添加到优先级的增量,以确保缓冲区不包含空优先级。默认值为 1e-8。

  • reduction (str, 可选) – 多维张量字典(即存储的轨迹)的减少方法。可以是“max”、“min”、“median”或“mean”之一。

  • max_priority_within_buffer (bool, 可选) – 如果 True,则在缓冲区内跟踪最大优先级。当 False 时,最大优先级跟踪自采样器实例化以来的最大值。

示例

>>> from torchrl.data.replay_buffers import ReplayBuffer, LazyTensorStorage, PrioritizedSampler
>>> from tensordict import TensorDict
>>> rb = ReplayBuffer(storage=LazyTensorStorage(10), sampler=PrioritizedSampler(max_capacity=10, alpha=1.0, beta=1.0))
>>> priority = torch.tensor([0, 1000])
>>> data_0 = TensorDict({"reward": 0, "obs": [0], "action": [0], "priority": priority[0]}, [])
>>> data_1 = TensorDict({"reward": 1, "obs": [1], "action": [2], "priority": priority[1]}, [])
>>> rb.add(data_0)
>>> rb.add(data_1)
>>> rb.update_priority(torch.tensor([0, 1]), priority=priority)
>>> sample, info = rb.sample(10, return_info=True)
>>> print(sample)
TensorDict(
        fields={
            action: Tensor(shape=torch.Size([10, 1]), device=cpu, dtype=torch.int64, is_shared=False),
            obs: Tensor(shape=torch.Size([10, 1]), device=cpu, dtype=torch.int64, is_shared=False),
            priority: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.int64, is_shared=False),
            reward: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.int64, is_shared=False)},
        batch_size=torch.Size([10]),
        device=cpu,
        is_shared=False)
>>> print(info)
{'_weight': array([1.e-11, 1.e-11, 1.e-11, 1.e-11, 1.e-11, 1.e-11, 1.e-11, 1.e-11,
       1.e-11, 1.e-11], dtype=float32), 'index': array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])}

注意

使用 TensorDictReplayBuffer 可以简化更新优先级的过程

>>> from torchrl.data.replay_buffers import TensorDictReplayBuffer as TDRB, LazyTensorStorage, PrioritizedSampler
>>> from tensordict import TensorDict
>>> rb = TDRB(
...     storage=LazyTensorStorage(10),
...     sampler=PrioritizedSampler(max_capacity=10, alpha=1.0, beta=1.0),
...     priority_key="priority",  # This kwarg isn't present in regular RBs
... )
>>> priority = torch.tensor([0, 1000])
>>> data_0 = TensorDict({"reward": 0, "obs": [0], "action": [0], "priority": priority[0]}, [])
>>> data_1 = TensorDict({"reward": 1, "obs": [1], "action": [2], "priority": priority[1]}, [])
>>> data = torch.stack([data_0, data_1])
>>> rb.extend(data)
>>> rb.update_priority(data)  # Reads the "priority" key as indicated in the constructor
>>> sample, info = rb.sample(10, return_info=True)
>>> print(sample['index'])  # The index is packed with the tensordict
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
update_priority(index: Union[int, torch.Tensor], priority: Union[float, torch.Tensor], *, storage: TensorStorage | None = None) None[source]

更新索引指向的数据的优先级。

参数:
  • index (inttorch.Tensor) – 要更新的优先级的索引。

  • priority (数字torch.Tensor) – 索引元素的新优先级。

关键字参数:

storage (Storage, 可选) – 用于将 Nd 索引大小映射到 sum_tree 和 min_tree 的 1d 大小的存储。仅在 index.ndim > 2 时需要。

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取针对初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源