RobosetExperienceReplay¶
- class torchrl.data.datasets.RobosetExperienceReplay(dataset_id, batch_size: int, *, root: str | Path | None = None, download: bool = True, sampler: Sampler | None = None, writer: Writer | None = None, collate_fn: Callable | None = None, pin_memory: bool = False, prefetch: int | None = None, transform: 'torchrl.envs.Transform' | None = None, split_trajs: bool = False, **env_kwargs)[source]¶
Roboset 经验回放数据集。
此类从 roboset 下载 H5 数据并在 mmap 格式中进行处理,这使得索引(因此采样)更快。
在此处了解有关 roboset 的更多信息:https://sites.google.com/view/robohive/roboset
数据格式遵循 TED 约定。
- 参数:
dataset_id (str) – 要下载的数据集。必须是 RobosetExperienceReplay.available_datasets 的一部分。
batch_size (int) – 采样期间使用的批次大小。如果需要,可以由 data.sample(batch_size) 覆盖。
- 关键字参数:
root (Path 或 str, 可选) – Roboset 数据集根目录。实际数据集内存映射文件将保存在 <root>/<dataset_id> 下。如果未提供,则默认为 ``~/.cache/torchrl/roboset`。
download (bool 或 str, 可选) – 如果未找到,是否应下载数据集。默认为
True
。下载也可以作为"force"
传递,在这种情况下,下载的数据将被覆盖。sampler (Sampler, 可选) – 要使用的采样器。如果未提供,将使用默认的 RandomSampler()。
writer (Writer, 可选) – 要使用的写入器。如果未提供,将使用默认的
ImmutableDatasetWriter
。collate_fn (callable, 可选) – 将样本列表合并为一个张量 (s) / 输出的小批量。在从地图样式数据集进行批处理加载时使用。
pin_memory (bool) – 是否应在 rb 样本上调用 pin_memory()。
prefetch (int, 可选) – 使用多线程预取的下一个批次的数目。
transform (Transform, 可选) – 在调用 sample() 时要执行的转换。要链接转换,请使用
Compose
类。split_trajs (bool, 可选) – 如果为
True
,则轨迹将沿第一个维度拆分并填充以具有匹配的形状。要拆分轨迹,将使用"done"
信号,该信号通过done = truncated | terminated
恢复。换句话说,假设任何truncated
或terminated
信号都等效于轨迹的结束。默认为False
。
- 变量:
available_datasets – 要下载的接受项列表。
示例
>>> import torch >>> torch.manual_seed(0) >>> from torchrl.envs.transforms import ExcludeTransform >>> from torchrl.data.datasets import RobosetExperienceReplay >>> d = RobosetExperienceReplay("FK1-v4(expert)/FK1_MicroOpenRandom_v2d-v4", batch_size=32, ... transform=ExcludeTransform("info", ("next", "info"))) # excluding info dict for conciseness >>> for batch in d: ... break >>> # data is organised by seed and episode, but stored contiguously >>> print(f"{batch['seed']}, {batch['episode']}") tensor([2, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 2, 0, 0, 1, 1, 2, 1]) tensor([17, 20, 18, 9, 6, 1, 12, 6, 2, 6, 8, 15, 8, 21, 17, 3, 9, 20, 23, 12, 3, 16, 19, 16, 16, 4, 4, 12, 1, 2, 15, 24]) >>> print(batch) TensorDict( fields={ action: Tensor(shape=torch.Size([32, 9]), device=cpu, dtype=torch.float64, is_shared=False), done: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False), episode: Tensor(shape=torch.Size([32]), device=cpu, dtype=torch.int64, is_shared=False), index: Tensor(shape=torch.Size([32]), device=cpu, dtype=torch.int64, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False), observation: Tensor(shape=torch.Size([32, 75]), device=cpu, dtype=torch.float64, is_shared=False), reward: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.float64, is_shared=False), terminated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([32]), device=cpu, is_shared=False), observation: Tensor(shape=torch.Size([32, 75]), device=cpu, dtype=torch.float64, is_shared=False), seed: Tensor(shape=torch.Size([32]), device=cpu, dtype=torch.int64, is_shared=False), terminated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False), time: Tensor(shape=torch.Size([32]), device=cpu, dtype=torch.float64, is_shared=False)}, truncated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([32]), device=cpu, is_shared=False)
- add(data: TensorDictBase) int ¶
将单个元素添加到回放缓冲区。
- 参数:
data (Any) – 要添加到回放缓冲区的数据
- 返回值:
数据在回放缓冲区中的位置索引。
- append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer ¶
在末尾追加变换。
当调用 sample 时,变换按顺序应用。
- 参数:
transform (Transform) – 要追加的变换
- 关键字参数:
invert (bool, optional) – 如果为
True
,则变换将被反转(向前调用将在写入期间调用,反向调用将在读取期间调用)。默认值为False
。
示例
>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4) >>> data = TensorDict({"a": torch.zeros(10)}, [10]) >>> def t(data): ... data += 1 ... return data >>> rb.append_transform(t, invert=True) >>> rb.extend(data) >>> assert (data == 1).all()
- property data_path¶
数据集的路径,包括分割。
- property data_path_root¶
数据集根目录的路径。
- delete()¶
从磁盘删除数据集存储。
- dumps(path)¶
将重放缓冲区保存到指定路径的磁盘上。
- 参数:
path (Path or str) – 保存重放缓冲区的路径。
示例
>>> import tempfile >>> import tqdm >>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer >>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler >>> import torch >>> from tensordict import TensorDict >>> # Build and populate the replay buffer >>> S = 1_000_000 >>> sampler = PrioritizedSampler(S, 1.1, 1.0) >>> # sampler = RandomSampler() >>> storage = LazyMemmapStorage(S) >>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler) >>> >>> for _ in tqdm.tqdm(range(100)): ... td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100]) ... rb.extend(td) ... sample = rb.sample(32) ... rb.update_tensordict_priority(sample) >>> # save and load the buffer >>> with tempfile.TemporaryDirectory() as tmpdir: ... rb.dumps(tmpdir) ... ... sampler = PrioritizedSampler(S, 1.1, 1.0) ... # sampler = RandomSampler() ... storage = LazyMemmapStorage(S) ... rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler) ... rb_load.loads(tmpdir) ... assert len(rb) == len(rb_load)
- empty()¶
清空重放缓冲区并将光标重置为 0。
- extend(tensordicts: TensorDictBase) Tensor ¶
使用可迭代对象中包含的一个或多个元素扩展重放缓冲区。
如果存在,将调用反向变换。`
- 参数:
data (iterable) – 要添加到重放缓冲区的数据集合。
- 返回值:
添加到重放缓冲区的数据的索引。
警告
extend()
在处理值列表时可能具有模棱两可的签名,这些值应该被解释为 PyTree(在这种情况下,列表中的所有元素都将被放入存储的 PyTree 中的切片中)或要逐个添加的值列表。为了解决这个问题,TorchRL 对列表和元组做出了明确的区别:元组将被视为 PyTree,列表(在根级别)将被解释为要逐个添加到缓冲区的堆叠值。对于ListStorage
实例,只能提供未绑定的元素(没有 PyTrees)。
- insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer ¶
插入变换。
当调用 sample 时,变换按顺序执行。
- 参数:
index (int) – 插入变换的位置。
transform (Transform) – 要追加的变换
- 关键字参数:
invert (bool, optional) – 如果为
True
,则变换将被反转(向前调用将在写入期间调用,反向调用将在读取期间调用)。默认值为False
。
- loads(path)¶
在给定路径加载重放缓冲区状态。
缓冲区应具有匹配的组件,并使用
dumps()
保存。- 参数:
path (Path or str) – 保存重放缓冲区的路径。
有关更多信息,请参见
dumps()
。
- preprocess(fn: Callable[[TensorDictBase], TensorDictBase], dim: int = 0, num_workers: int | None = None, *, chunksize: int | None = None, num_chunks: int | None = None, pool: mp.Pool | None = None, generator: torch.Generator | None = None, max_tasks_per_child: int | None = None, worker_threads: int = 1, index_with_generator: bool = False, pbar: bool = False, mp_start_method: str | None = None, num_frames: int | None = None, dest: str | Path) TensorStorage ¶
预处理数据集并返回包含格式化数据的新的存储。
数据变换必须是单一的(在数据集的单个样本上工作)。
参数和关键字参数被转发到
map()
。数据集随后可以使用
delete()
删除。- 关键字参数:
dest (路径 或 等效项) – 新数据集位置的路径。
num_frames (int, 可选) – 如果提供,将仅转换前 num_frames 帧。 这对于在调试转换时很有用。
返回:一个新的存储器,将在
ReplayBuffer
实例中使用。示例
>>> from torchrl.data.datasets import MinariExperienceReplay >>> >>> data = MinariExperienceReplay( ... list(MinariExperienceReplay.available_datasets)[0], ... batch_size=32 ... ) >>> print(data) MinariExperienceReplay( storages=TensorStorage(TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)), samplers=RandomSampler, writers=ImmutableDatasetWriter(), batch_size=32, transform=Compose( ), collate_fn=<function _collate_id at 0x120e21dc0>) >>> from torchrl.envs import CatTensors, Compose >>> from tempfile import TemporaryDirectory >>> >>> cat_tensors = CatTensors( ... in_keys=[("observation", "observation"), ("observation", "achieved_goal"), ... ("observation", "desired_goal")], ... out_key="obs" ... ) >>> cat_next_tensors = CatTensors( ... in_keys=[("next", "observation", "observation"), ... ("next", "observation", "achieved_goal"), ... ("next", "observation", "desired_goal")], ... out_key=("next", "obs") ... ) >>> t = Compose(cat_tensors, cat_next_tensors) >>> >>> def func(td): ... td = td.select( ... "action", ... "episode", ... ("next", "done"), ... ("next", "observation"), ... ("next", "reward"), ... ("next", "terminated"), ... ("next", "truncated"), ... "observation" ... ) ... td = t(td) ... return td >>> with TemporaryDirectory() as tmpdir: ... new_storage = data.preprocess(func, num_workers=4, pbar=True, mp_start_method="fork", dest=tmpdir) ... rb = ReplayBuffer(storage=new_storage) ... print(rb) ReplayBuffer( storage=TensorStorage( data=TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), shape=torch.Size([1000000]), len=1000000, max_size=1000000), sampler=RandomSampler(), writer=RoundRobinWriter(cursor=0, full_storage=True), batch_size=None, collate_fn=<function _collate_id at 0x168406fc0>)
- register_load_hook(hook: Callable[[Any], Any])¶
为存储注册加载钩子。
注意
在保存重播缓冲区时,当前不会序列化钩子:每次创建缓冲区时,都必须手动重新初始化它们。
- register_save_hook(hook: Callable[[Any], Any])¶
为存储注册保存钩子。
注意
在保存重播缓冲区时,当前不会序列化钩子:每次创建缓冲区时,都必须手动重新初始化它们。
- sample(batch_size: int | None = None, return_info: bool = False, include_info: bool = None) TensorDictBase ¶
从重播缓冲区中采样一批数据。
使用 Sampler 采样索引,并从 Storage 中检索它们。
- 参数:
batch_size (int, 可选) – 要收集的数据的大小。 如果没有提供,此方法将根据采样器指示的批次大小采样。
return_info (bool) – 是否返回信息。 如果为 True,则结果为元组 (data, info)。 如果为 False,则结果为数据。
- 返回值:
一个包含在重播缓冲区中选择的批次数据的 tensordict。 如果 return_info 标志设置为 True,则包含此 tensordict 和信息的元组。