快捷方式

OpenMLExperienceReplay

class torchrl.data.datasets.OpenMLExperienceReplay(name: str, batch_size: int, root: Path | None = None, sampler: Sampler | None = None, writer: Writer | None = None, collate_fn: Callable | None = None, pin_memory: bool = False, prefetch: int | None = None, transform: 'Transform' | None = None)[源代码]

用于 OpenML 数据的体验回放。

此类为公共数据集提供了简单的切入点。请参阅“Dua,D. 和 Graff,C. (2017) UCI 机器学习知识库。 http://archive.ics.uci.edu/ml

数据格式遵循 TED 约定

通过 scikit-learn 访问数据。在检索数据之前,请确保已安装 sklearn 和 pandas

$ pip install scikit-learn pandas -U
参数:
  • name (str) – 支持以下数据集: "adult_num""adult_onehot""mushroom_num""mushroom_onehot""covertype""shuttle""magic"

  • batch_size (int) – 采样过程中使用的批次大小。

  • sampler (Sampler, 可选) – 要使用的采样器。如果没有提供,将使用默认的 RandomSampler()。

  • writer (Writer, 可选) – 要使用的写入器。如果没有提供,将使用默认的 ImmutableDatasetWriter

  • collate_fn (callable, 可选) – 合并样本列表以形成 Tensor(s)/输出的小批量。在从映射样式数据集进行批量加载时使用。

  • pin_memory (bool) – 是否应该在 rb 样本上调用 pin_memory()。

  • prefetch (int, 可选) – 使用多线程预取的下一个批次的数量。

  • transform (Transform, 可选) – 在调用 sample() 时要执行的转换。要链接转换,请使用 Compose 类。

add(data: TensorDictBase) int

向回放缓冲区添加单个元素。

参数:

data (Any) – 要添加到回放缓冲区的数据

返回值:

数据在回放缓冲区中的位置索引。

append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer

在末尾追加转换。

调用 sample 时,转换将按顺序应用。

参数:

transform (Transform) – 要追加的转换

关键字参数:

invert (bool, 可选) – 如果 True,变换将被反转(在写入期间将调用前向调用,在读取期间将调用反向调用)。默认为 False

示例

>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4)
>>> data = TensorDict({"a": torch.zeros(10)}, [10])
>>> def t(data):
...     data += 1
...     return data
>>> rb.append_transform(t, invert=True)
>>> rb.extend(data)
>>> assert (data == 1).all()
abstract property data_path: Path

数据集的路径,包括分割。

abstract property data_path_root: Path

数据集根目录的路径。

delete()

从磁盘删除数据集存储。

dump(*args, **kwargs)

的别名 dumps()

dumps(path)

将重放缓冲区保存到磁盘上的指定路径。

参数:

path (Pathstr) – 保存重放缓冲区的路径。

示例

>>> import tempfile
>>> import tqdm
>>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer
>>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler
>>> import torch
>>> from tensordict import TensorDict
>>> # Build and populate the replay buffer
>>> S = 1_000_000
>>> sampler = PrioritizedSampler(S, 1.1, 1.0)
>>> # sampler = RandomSampler()
>>> storage = LazyMemmapStorage(S)
>>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler)
>>>
>>> for _ in tqdm.tqdm(range(100)):
...     td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100])
...     rb.extend(td)
...     sample = rb.sample(32)
...     rb.update_tensordict_priority(sample)
>>> # save and load the buffer
>>> with tempfile.TemporaryDirectory() as tmpdir:
...     rb.dumps(tmpdir)
...
...     sampler = PrioritizedSampler(S, 1.1, 1.0)
...     # sampler = RandomSampler()
...     storage = LazyMemmapStorage(S)
...     rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler)
...     rb_load.loads(tmpdir)
...     assert len(rb) == len(rb_load)
empty()

清空重放缓冲区并将光标重置为 0。

extend(tensordicts: TensorDictBase) Tensor

使用可迭代对象中包含的一个或多个元素扩展重放缓冲区。

如果存在,将调用逆变换。

参数:

data (可迭代对象) – 要添加到重放缓冲区的数据集合。

返回值:

添加到重放缓冲区的数据的索引。

警告

extend() 在处理值列表时可能具有模棱两可的签名,这些值应解释为 PyTree(在这种情况下,列表中的所有元素都将放在存储中存储的 PyTree 中的一个切片中)或要一次添加一个的值的列表。为了解决这个问题,TorchRL 在列表和元组之间做出了明确的区分:元组将被视为 PyTree,列表(在根级别)将被解释为要一次添加到缓冲区中的值的堆栈。对于 ListStorage 实例,只能提供未绑定的元素(没有 PyTree)。

insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer

插入变换。

当调用 sample 时,按顺序执行变换。

参数:
  • index (int) – 插入变换的位置。

  • transform (Transform) – 要追加的转换

关键字参数:

invert (bool, 可选) – 如果 True,变换将被反转(在写入期间将调用前向调用,在读取期间将调用反向调用)。默认为 False

load(*args, **kwargs)

的别名 loads()

loads(path)

在给定路径加载重放缓冲区状态。

缓冲区应具有匹配的组件,并使用 dumps() 保存。

参数:

path (Pathstr) – 保存重放缓冲区的路径。

有关更多信息,请参见 dumps()

preprocess(fn: Callable[[TensorDictBase], TensorDictBase], dim: int = 0, num_workers: int | None = None, *, chunksize: int | None = None, num_chunks: int | None = None, pool: mp.Pool | None = None, generator: torch.Generator | None = None, max_tasks_per_child: int | None = None, worker_threads: int = 1, index_with_generator: bool = False, pbar: bool = False, mp_start_method: str | None = None, num_frames: int | None = None, dest: str | Path) TensorStorage

预处理数据集并返回一个包含格式化数据的新的存储。

数据转换必须是酉的(对数据集的单个样本进行操作)。

参数和关键字参数被转发到 map()

随后可以使用 delete() 删除数据集。

关键字参数:
  • dest (路径等效项) – 新数据集的存储位置路径。

  • num_frames (int, 可选) – 如果提供,只转换前 num_frames 个帧。这对于最初调试转换很有用。

返回:一个将在 ReplayBuffer 实例中使用的新存储。

示例

>>> from torchrl.data.datasets import MinariExperienceReplay
>>>
>>> data = MinariExperienceReplay(
...     list(MinariExperienceReplay.available_datasets)[0],
...     batch_size=32
...     )
>>> print(data)
MinariExperienceReplay(
    storages=TensorStorage(TensorDict(
        fields={
            action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True),
            episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True),
            info: TensorDict(
                fields={
                    distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True),
                    qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True),
                    x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False),
            next: TensorDict(
                fields={
                    done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                    info: TensorDict(
                        fields={
                            distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True),
                            qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True),
                            x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)},
                        batch_size=torch.Size([1000000]),
                        device=cpu,
                        is_shared=False),
                    observation: TensorDict(
                        fields={
                            achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)},
                        batch_size=torch.Size([1000000]),
                        device=cpu,
                        is_shared=False),
                    reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True),
                    terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                    truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False),
            observation: TensorDict(
                fields={
                    achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False)},
        batch_size=torch.Size([1000000]),
        device=cpu,
        is_shared=False)),
    samplers=RandomSampler,
    writers=ImmutableDatasetWriter(),
batch_size=32,
transform=Compose(
),
collate_fn=<function _collate_id at 0x120e21dc0>)
>>> from torchrl.envs import CatTensors, Compose
>>> from tempfile import TemporaryDirectory
>>>
>>> cat_tensors = CatTensors(
...     in_keys=[("observation", "observation"), ("observation", "achieved_goal"),
...              ("observation", "desired_goal")],
...     out_key="obs"
...     )
>>> cat_next_tensors = CatTensors(
...     in_keys=[("next", "observation", "observation"),
...              ("next", "observation", "achieved_goal"),
...              ("next", "observation", "desired_goal")],
...     out_key=("next", "obs")
...     )
>>> t = Compose(cat_tensors, cat_next_tensors)
>>>
>>> def func(td):
...     td = td.select(
...         "action",
...         "episode",
...         ("next", "done"),
...         ("next", "observation"),
...         ("next", "reward"),
...         ("next", "terminated"),
...         ("next", "truncated"),
...         "observation"
...         )
...     td = t(td)
...     return td
>>> with TemporaryDirectory() as tmpdir:
...     new_storage = data.preprocess(func, num_workers=4, pbar=True, mp_start_method="fork", dest=tmpdir)
...     rb = ReplayBuffer(storage=new_storage)
...     print(rb)
ReplayBuffer(
    storage=TensorStorage(
        data=TensorDict(
            fields={
                action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True),
                episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True),
                next: TensorDict(
                    fields={
                        done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                        obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True),
                        observation: TensorDict(
                            fields={
                            },
                            batch_size=torch.Size([1000000]),
                            device=cpu,
                            is_shared=False),
                        reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True),
                        terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                        truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)},
                    batch_size=torch.Size([1000000]),
                    device=cpu,
                    is_shared=False),
                obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True),
                observation: TensorDict(
                    fields={
                    },
                    batch_size=torch.Size([1000000]),
                    device=cpu,
                    is_shared=False)},
            batch_size=torch.Size([1000000]),
            device=cpu,
            is_shared=False),
        shape=torch.Size([1000000]),
        len=1000000,
        max_size=1000000),
    sampler=RandomSampler(),
    writer=RoundRobinWriter(cursor=0, full_storage=True),
    batch_size=None,
    collate_fn=<function _collate_id at 0x168406fc0>)
register_load_hook(hook: Callable[[Any], Any])

为存储注册加载钩子。

注意

当前在保存重放缓冲区时不会序列化钩子:每次创建缓冲区时必须手动重新初始化它们。

register_save_hook(hook: Callable[[Any], Any])

为存储注册保存钩子。

注意

当前在保存重放缓冲区时不会序列化钩子:每次创建缓冲区时必须手动重新初始化它们。

sample(batch_size: int | None = None, return_info: bool = False, include_info: bool = None) TensorDictBase

从重放缓冲区中采样一批数据。

使用 Sampler 采样索引,并从 Storage 中检索它们。

参数:
  • batch_size (int, optional) – 要收集的数据大小。如果没有提供,此方法将根据采样器采样批次大小。

  • return_info (bool) – 是否返回信息。如果为 True,则结果为一个元组 (data, info)。如果为 False,则结果为数据。

返回值:

包含在重放缓冲区中选择的批次数据的 tensordict。如果 return_info 标志设置为 True,则包含此 tensordict 和信息的元组。

property sampler

重放缓冲区的采样器。

采样器必须是 Sampler 的实例。

save(*args, **kwargs)

的别名 dumps()

set_sampler(sampler: Sampler)

在重放缓冲区中设置一个新的采样器,并返回之前的采样器。

set_storage(storage: Storage, collate_fn: Callable | None = None)

在重放缓冲区中设置一个新的存储,并返回之前的存储。

参数:
  • storage (Storage) – 缓冲区的新存储。

  • collate_fn (callable, optional) – 如果提供,则将 collate_fn 设置为此值。否则,它将重置为默认值。

set_writer(writer: Writer)

在重放缓冲区中设置一个新的写入器,并返回之前的写入器。

property storage

重放缓冲区的存储。

存储必须是 Storage 的实例。

property writer

重放缓冲区的写入器。

写入器必须是 Writer 的实例。

文档

访问 PyTorch 的全面的开发者文档

查看文档

教程

为初学者和高级开发者提供深入的教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源