快捷方式

D4RLExperienceReplay

class torchrl.data.datasets.D4RLExperienceReplay(dataset_id, batch_size: int, sampler: Sampler | None = None, writer: Writer | None = None, collate_fn: Callable | None = None, pin_memory: bool = False, prefetch: int | None = None, transform: 'torchrl.envs.Transform' | None = None, split_trajs: bool = False, from_env: bool = False, use_truncated_as_done: bool = True, direct_download: bool = None, terminate_on_end: bool = None, download: bool = True, root: str | Path | None = None, **env_kwargs)[source]

D4RL 的经验回放类。

要安装 D4RL,请按照官方仓库中的说明进行操作。

数据格式遵循TED 约定。回放缓冲区包含 D4RLExperienceReplay.specs 下的环境规范。

如果存在,元数据将写入 D4RLExperienceReplay.metadata 并从数据集中排除。

转换使用 done = terminated | truncated 重建,并且 "done" 状态的 ("next", "observation") 为零。

参数:
  • dataset_id (str) – 要从中获取数据的 D4RL 环境的 dataset_id。

  • batch_size (int) – 采样期间使用的批次大小。

  • sampler (Sampler, 可选) – 要使用的采样器。如果未提供,将使用默认的 RandomSampler()。

  • writer (Writer, 可选) – 要使用的写入器。如果未提供,将使用默认的 ImmutableDatasetWriter

  • collate_fn (callable, 可选) – 合并样本列表以形成张量/输出的小批量。在使用来自映射样式数据集的批量加载时使用。

  • pin_memory (bool) – 是否应在 rb 样本上调用 pin_memory()。

  • prefetch (int, 可选) – 使用多线程预取的下一个批次的数目。

  • transform (Transform, 可选) – 调用 sample() 时要执行的转换。要链接转换,请使用 Compose 类。

  • split_trajs (bool, optional) – 如果 True,轨迹将沿第一个维度分割并填充以具有匹配的形状。为了分割轨迹,将使用 "done" 信号,该信号通过 done = truncated | terminated 恢复。换句话说,假设任何 truncatedterminated 信号等效于轨迹的结束。对于来自 D4RL 的某些数据集,这可能不正确。用户需要根据 split_trajs 的这种用法做出准确的选择。默认为 False

  • from_env (bool, optional) –

    如果 True,将使用 env.get_dataset() 检索数据集。否则将使用 d4rl.qlearning_dataset()。默认为 True

    注意

    使用 from_env=False 将提供比 from_env=True 更少的数据。例如,信息键将被省略。通常,from_env=Falseterminate_on_end=True 将导致与 from_env=True 相同的结果,后者包含前者不具有的元数据和信息条目。

    注意

    from_env=Truefrom_env=False 中的键 *可能* 会意外地不同。特别是,"truncated" 键(用于确定一个episode的结束)在 from_env=False 时可能不存在,但在其他情况下存在,导致在启用 traj_splits 时切片不同。

  • direct_download (bool) – 如果 True,数据将被下载而无需 D4RL。如果为 None,如果环境中存在 d4rl,它将用于下载数据集,否则下载将回退到 direct_download=True。这与 from_env=True 不兼容。默认为 None

  • use_truncated_as_done (bool, optional) – 如果 Truedone = terminated | truncated。否则,仅使用 terminated 键。默认为 True

  • terminate_on_end (bool, optional) – 在轨迹的最后一个时间步长设置 done=True。默认为 False,并将丢弃每个轨迹的最后一个时间步长。这仅与 direct_download=False 一起使用。

  • root (Pathstr, optional) – D4RL 数据集根目录。实际的数据集内存映射文件将保存在 <root>/<dataset_id> 下。如果未提供,则默认为 ``~/.cache/torchrl/d4rl`。

  • download (bool, optional) – 数据集是否应在找不到时下载。默认为 True

  • **env_kwargs (键值对) – d4rl.qlearning_dataset() 的其他关键字参数。

示例

>>> from torchrl.data.datasets.d4rl import D4RLExperienceReplay
>>> from torchrl.envs import ObservationNorm
>>> data = D4RLExperienceReplay("maze2d-umaze-v1", 128)
>>> # we can append transforms to the dataset
>>> data.append_transform(ObservationNorm(loc=-1, scale=1.0, in_keys=["observation"]))
>>> data.sample(128)
add(data: TensorDictBase) int

将单个元素添加到回放缓冲区。

参数:

data (Any) – 要添加到回放缓冲区的数据

返回:

数据在回放缓冲区中的索引。

append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer

在末尾追加转换。

当调用 sample 时,转换将按顺序应用。

参数:

transform (Transform) – 要追加的转换

关键字参数:

invert (bool, optional) – 如果 True,转换将被反转(正向调用将在写入期间调用,反向调用将在读取期间调用)。默认为 False

示例

>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4)
>>> data = TensorDict({"a": torch.zeros(10)}, [10])
>>> def t(data):
...     data += 1
...     return data
>>> rb.append_transform(t, invert=True)
>>> rb.extend(data)
>>> assert (data == 1).all()
property data_path: Path

数据集的路径,包括分割。

property data_path_root: Path

数据集根目录的路径。

delete()

从磁盘删除数据集存储。

dump(*args, **kwargs)

dumps() 的别名。

dumps(path)

将回放缓冲区保存到指定路径的磁盘上。

参数:

path (Pathstr) – 保存回放缓冲区的路径。

示例

>>> import tempfile
>>> import tqdm
>>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer
>>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler
>>> import torch
>>> from tensordict import TensorDict
>>> # Build and populate the replay buffer
>>> S = 1_000_000
>>> sampler = PrioritizedSampler(S, 1.1, 1.0)
>>> # sampler = RandomSampler()
>>> storage = LazyMemmapStorage(S)
>>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler)
>>>
>>> for _ in tqdm.tqdm(range(100)):
...     td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100])
...     rb.extend(td)
...     sample = rb.sample(32)
...     rb.update_tensordict_priority(sample)
>>> # save and load the buffer
>>> with tempfile.TemporaryDirectory() as tmpdir:
...     rb.dumps(tmpdir)
...
...     sampler = PrioritizedSampler(S, 1.1, 1.0)
...     # sampler = RandomSampler()
...     storage = LazyMemmapStorage(S)
...     rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler)
...     rb_load.loads(tmpdir)
...     assert len(rb) == len(rb_load)
empty()

清空回放缓冲区并将光标重置为 0。

extend(tensordicts: TensorDictBase) Tensor

使用可迭代对象中包含的一个或多个元素扩展回放缓冲区。

如果存在,将调用反向转换。

参数:

data (iterable) – 要添加到回放缓冲区的数据集合。

返回:

添加到回放缓冲区的数据的索引。

警告

当处理值列表时,extend() 可能具有模棱两可的签名,这些值应被解释为 PyTree(在这种情况下,列表中的所有元素都将被放入存储中存储的 PyTree 中的一个切片)或要逐个添加的值列表。为了解决这个问题,TorchRL 在列表和元组之间做出了明确的区别:元组将被视为 PyTree,列表(在根级别)将被解释为要逐个添加到缓冲区的值的堆栈。对于 ListStorage 实例,只能提供未绑定的元素(没有 PyTree)。

insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer

插入转换。

当调用 sample 时,转换将按顺序执行。

参数:
  • index (int) – 插入转换的位置。

  • transform (Transform) – 要追加的转换

关键字参数:

invert (bool, optional) – 如果 True,转换将被反转(正向调用将在写入期间调用,反向调用将在读取期间调用)。默认为 False

load(*args, **kwargs)

loads() 的别名。

loads(path)

加载给定路径下的回放缓冲区状态。

缓冲区应具有匹配的组件,并使用dumps()保存。

参数:

path (Pathstr) – 重放缓冲区保存的路径。

有关更多信息,请参阅dumps()

preprocess(fn: Callable[[TensorDictBase], TensorDictBase], dim: int = 0, num_workers: int | None = None, *, chunksize: int | None = None, num_chunks: int | None = None, pool: mp.Pool | None = None, generator: torch.Generator | None = None, max_tasks_per_child: int | None = None, worker_threads: int = 1, index_with_generator: bool = False, pbar: bool = False, mp_start_method: str | None = None, num_frames: int | None = None, dest: str | Path) TensorStorage

预处理数据集并返回一个包含格式化数据的新的存储。

数据转换必须是单一的(作用于数据集的单个样本)。

参数和关键字参数被转发到map()

随后可以使用delete()删除数据集。

关键字参数:
  • dest (path等效项) – 新数据集位置的路径。

  • num_frames (int, 可选) – 如果提供,则仅转换前num_frames。这对于首先调试转换很有用。

返回:一个新的存储,可在ReplayBuffer实例中使用。

示例

>>> from torchrl.data.datasets import MinariExperienceReplay
>>>
>>> data = MinariExperienceReplay(
...     list(MinariExperienceReplay.available_datasets)[0],
...     batch_size=32
...     )
>>> print(data)
MinariExperienceReplay(
    storages=TensorStorage(TensorDict(
        fields={
            action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True),
            episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True),
            info: TensorDict(
                fields={
                    distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True),
                    qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True),
                    x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False),
            next: TensorDict(
                fields={
                    done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                    info: TensorDict(
                        fields={
                            distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True),
                            qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True),
                            x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)},
                        batch_size=torch.Size([1000000]),
                        device=cpu,
                        is_shared=False),
                    observation: TensorDict(
                        fields={
                            achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)},
                        batch_size=torch.Size([1000000]),
                        device=cpu,
                        is_shared=False),
                    reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True),
                    terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                    truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False),
            observation: TensorDict(
                fields={
                    achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False)},
        batch_size=torch.Size([1000000]),
        device=cpu,
        is_shared=False)),
    samplers=RandomSampler,
    writers=ImmutableDatasetWriter(),
batch_size=32,
transform=Compose(
),
collate_fn=<function _collate_id at 0x120e21dc0>)
>>> from torchrl.envs import CatTensors, Compose
>>> from tempfile import TemporaryDirectory
>>>
>>> cat_tensors = CatTensors(
...     in_keys=[("observation", "observation"), ("observation", "achieved_goal"),
...              ("observation", "desired_goal")],
...     out_key="obs"
...     )
>>> cat_next_tensors = CatTensors(
...     in_keys=[("next", "observation", "observation"),
...              ("next", "observation", "achieved_goal"),
...              ("next", "observation", "desired_goal")],
...     out_key=("next", "obs")
...     )
>>> t = Compose(cat_tensors, cat_next_tensors)
>>>
>>> def func(td):
...     td = td.select(
...         "action",
...         "episode",
...         ("next", "done"),
...         ("next", "observation"),
...         ("next", "reward"),
...         ("next", "terminated"),
...         ("next", "truncated"),
...         "observation"
...         )
...     td = t(td)
...     return td
>>> with TemporaryDirectory() as tmpdir:
...     new_storage = data.preprocess(func, num_workers=4, pbar=True, mp_start_method="fork", dest=tmpdir)
...     rb = ReplayBuffer(storage=new_storage)
...     print(rb)
ReplayBuffer(
    storage=TensorStorage(
        data=TensorDict(
            fields={
                action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True),
                episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True),
                next: TensorDict(
                    fields={
                        done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                        obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True),
                        observation: TensorDict(
                            fields={
                            },
                            batch_size=torch.Size([1000000]),
                            device=cpu,
                            is_shared=False),
                        reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True),
                        terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                        truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)},
                    batch_size=torch.Size([1000000]),
                    device=cpu,
                    is_shared=False),
                obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True),
                observation: TensorDict(
                    fields={
                    },
                    batch_size=torch.Size([1000000]),
                    device=cpu,
                    is_shared=False)},
            batch_size=torch.Size([1000000]),
            device=cpu,
            is_shared=False),
        shape=torch.Size([1000000]),
        len=1000000,
        max_size=1000000),
    sampler=RandomSampler(),
    writer=RoundRobinWriter(cursor=0, full_storage=True),
    batch_size=None,
    collate_fn=<function _collate_id at 0x168406fc0>)
register_load_hook(hook: Callable[[Any], Any])

注册存储的加载钩子。

注意

当前在保存重放缓冲区时不会序列化钩子:每次创建缓冲区时都必须手动重新初始化它们。

register_save_hook(hook: Callable[[Any], Any])

注册存储的保存钩子。

注意

当前在保存重放缓冲区时不会序列化钩子:每次创建缓冲区时都必须手动重新初始化它们。

sample(batch_size: int | None = None, return_info: bool = False, include_info: bool = None) TensorDictBase

从重放缓冲区采样一批数据。

使用 Sampler 采样索引,并从 Storage 中检索它们。

参数:
  • batch_size (int, 可选) – 要收集的数据的大小。如果没有提供,此方法将根据采样器指示采样批次大小。

  • return_info (bool) – 是否返回信息。如果为 True,则结果为元组 (data, info)。如果为 False,则结果为数据。

返回:

包含在重放缓冲区中选择的批次数据的张量字典。如果 return_info 标志设置为 True,则包含此张量字典和信息的元组。

property sampler

重放缓冲区的采样器。

采样器必须是Sampler的实例。

save(*args, **kwargs)

dumps() 的别名。

set_sampler(sampler: Sampler)

在重放缓冲区中设置新的采样器并返回之前的采样器。

set_storage(storage: Storage, collate_fn: Callable | None = None)

在重放缓冲区中设置新的存储并返回之前的存储。

参数:
  • storage (Storage) – 缓冲区的新存储。

  • collate_fn (callable, 可选) – 如果提供,则将 collate_fn 设置为此值。否则将其重置为默认值。

set_writer(writer: Writer)

在回放缓冲区中设置一个新的写入器,并返回之前的写入器。

属性 storage

回放缓冲区的存储。

存储必须是 Storage 的实例。

属性 writer

回放缓冲区的写入器。

写入器必须是 Writer 的实例。

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取针对初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源