快捷方式

LazyStackedTensorSpec

class torchrl.data.LazyStackedTensorSpec(*args, **kwargs)[source]

torchrl.data.Stacked 的已弃用版本。

assert_is_in(value: Tensor) None

断言张量是否属于该框,否则引发异常。

参数:

value (torch.Tensor) – 要检查的值。

clear_device_()

清除 Composite 的设备。

clone() T

创建 TensorSpec 的副本。

contains(item: torch.Tensor | tensordict.base.TensorDictBase) bool

如果值 val 可能由 TensorSpec 生成,则返回 True,否则返回 False

有关更多信息,请参阅 is_in()

cpu()

将 TensorSpec 转换为 'cpu' 设备。

cuda(device=None)

将 TensorSpec 转换为 'cuda' 设备。

property device: Union[device, str, int]

spec 的设备。

只有 Composite spec 可以拥有 None 设备。所有叶子节点都必须拥有非空设备。

encode(val: Union[ndarray, Tensor], *, ignore_device=False) Tensor

根据指定的 spec 编码值,并返回对应的张量。

此方法用于环境返回一个值(例如,一个 numpy 数组),该值可以轻松映射到 TorchRL 所需的域。如果该值已经是张量,则 spec 不会更改其值并按原样返回。

参数:

val (np.ndarraytorch.Tensor) – 要编码为张量的值。

关键字参数:

ignore_device (bool, optional) – 如果为 True,则 spec 设备将被忽略。这用于在调用 TensorDict(..., device="cuda") 中对张量转换进行分组,这样会更快。

返回:

与所需张量 spec 匹配的 torch.Tensor。

expand(*shape)

返回具有扩展形状的新 Spec。

参数:

*shape (tupleint 的可迭代对象) – Spec 的新形状。必须与当前形状可广播:其长度必须至少与当前形状长度一样长,并且其最后一个值也必须兼容;即,只有当当前维度是单例时,它们才能与当前维度不同。

flatten(start_dim: int, end_dim: int) T

展平 TensorSpec

有关此方法的更多信息,请查看 flatten()

classmethod implements_for_spec(torch_function: Callable) Callable

为 TensorSpec 注册一个 torch 函数覆盖。

abstract index(index: Union[int, Tensor, ndarray, slice, List], tensor_to_index: torch.Tensor | tensordict.base.TensorDictBase) torch.Tensor | tensordict.base.TensorDictBase

索引输入张量。

参数:
  • index (int, torch.Tensor, slicelist) – 张量的索引

  • tensor_to_index – 要索引的张量

返回:

索引张量

is_in(value) bool

如果值 val 可能由 TensorSpec 生成,则返回 True,否则返回 False

更准确地说,is_in 方法检查值 val 是否在 space 属性(框)定义的限制内,以及 dtypedeviceshape 以及可能其他元数据是否与 spec 的元数据匹配。如果任何这些检查失败,is_in 方法将返回 False

参数:

val (torch.Tensor) – 要检查的值。

返回:

布尔值,指示值是否属于 TensorSpec 框。

make_neg_dim(dim: int)

将特定维度转换为 -1

property ndim

spec 形状的维数。

快捷方式 len(spec.shape)

ndimension()

spec 形状的维数。

快捷方式 len(spec.shape)

one(shape: Optional[Size] = None) TensorDictBase

返回框中填充 1 的张量。

注意

即使不能保证 1 属于 spec 域,但当违反此条件时,此方法也不会引发异常。one 的主要用例是生成空数据缓冲区,而不是有意义的数据。

参数:

shape (torch.Size) – one-tensor 的形状

返回:

在 TensorSpec 框中采样的填充 1 的张量。

ones(shape: Optional[Size] = None) torch.Tensor | tensordict.base.TensorDictBase

代理到 one()

project(val: torch.Tensor | tensordict.base.TensorDictBase) torch.Tensor | tensordict.base.TensorDictBase

如果输入张量不在 TensorSpec 框中,则根据某些定义的启发式方法将其映射回框中。

参数:

val (torch.Tensor) – 要映射到框的张量。

返回:

属于 TensorSpec 框的 torch.Tensor。

rand(shape: Optional[Size] = None) TensorDictBase

返回 spec 定义的空间中的随机张量。

除非框是无界的,否则采样将在空间上均匀完成,在这种情况下,将绘制法线值。

参数:

shape (torch.Size) – 随机张量的形状

返回:

在 TensorSpec 框中采样的随机张量。

reshape(*shape) T

重塑 TensorSpec

有关此方法的更多信息,请查看 reshape()

sample(shape: Optional[Size] = None) torch.Tensor | tensordict.base.TensorDictBase

返回 spec 定义的空间中的随机张量。

有关详细信息,请参阅 rand()

squeeze(dim: Optional[int] = None)

返回一个新的 Spec,其中删除了所有大小为 1 的维度。

当给定 dim 时,仅在该维度上执行 squeeze 操作。

参数:

dim (intNone) – 要应用 squeeze 操作的维度

to(dest: Union[dtype, device, str, int]) T

将 TensorSpec 转换为设备或 dtype。

如果未进行任何更改,则返回相同的 spec。

to_numpy(val: Tensor, safe: Optional[bool] = None) dict

返回输入张量的 np.ndarray 对应项。

这旨在作为 encode() 的逆运算。

参数:
  • val (torch.Tensor) – 要转换为 numpy 的张量。

  • safe (bool) – 布尔值,指示是否应根据 spec 的域对值执行检查。默认为 CHECK_SPEC_ENCODE 环境变量的值。

返回:

一个 np.ndarray。

type_check(value: Tensor, key: Optional[NestedKey] = None) None

根据 TensorSpec dtype 检查输入值 dtype,如果它们不匹配,则引发异常。

参数:
  • value (torch.Tensor) – 要检查 dtype 的张量。

  • key (str, optional) – 如果 TensorSpec 有键,则将根据指示键指向的 spec 检查值 dtype。

unflatten(dim: int, sizes: Tuple[int]) T

取消展平 TensorSpec

有关此方法的更多信息,请查看 unflatten()

unsqueeze(dim: int)

返回一个新的 Spec,其中增加了一个单例维度(位于 dim 指示的位置)。

参数:

dim (intNone) – 要应用 unsqueeze 操作的维度。

view(*shape) T

重塑 TensorSpec

有关此方法的更多信息,请查看 reshape()

zero(shape: Optional[Size] = None) TensorDictBase

返回框中填充 0 的张量。

注意

即使不能保证 0 属于 spec 域,但当违反此条件时,此方法也不会引发异常。zero 的主要用例是生成空数据缓冲区,而不是有意义的数据。

参数:

shape (torch.Size) – zero-tensor 的形状

返回:

在 TensorSpec 框中采样的填充 0 的张量。

zeros(shape: Optional[Size] = None) torch.Tensor | tensordict.base.TensorDictBase

代理到 zero()

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取面向初学者和高级开发者的深入教程

查看教程

资源

查找开发资源并获得问题解答

查看资源