快捷方式

BoundedTensorSpec

class torchrl.data.BoundedTensorSpec(*args, **kwargs)[源代码]

torchrl.data.Bounded 的已弃用版本。

assert_is_in(value: Tensor) None

断言张量是否属于该范围,否则引发异常。

参数:

value (torch.Tensor) – 要检查的值。

clear_device_() T

所有叶子规格的空操作(必须具有设备)。

对于 Composite 规格,此方法将擦除设备。

clone() Bounded

创建 TensorSpec 的副本。

contains(item: torch.Tensor | tensordict.base.TensorDictBase) bool

如果值 val 可能由 TensorSpec 生成,则返回 True,否则返回 False

有关更多信息,请参阅 is_in()

cpu()

将 TensorSpec 转换为 “cpu” 设备。

cuda(device=None)

将 TensorSpec 转换为 “cuda” 设备。

property device: device

规格的设备。

只有 Composite 规格可以具有 None 设备。所有叶子都必须具有非空设备。

encode(val: numpy.ndarray | torch.Tensor | tensordict.base.TensorDictBase, *, ignore_device: bool = False) torch.Tensor | tensordict.base.TensorDictBase

根据指定的规格编码值,并返回相应的张量。

此方法用于环境返回一个值(例如,一个 numpy 数组),该值可以轻松映射到 TorchRL 所需的域。如果该值已经是张量,则规格不会更改其值并按原样返回。

参数:

val (np.ndarraytorch.Tensor) – 要编码为张量的值。

关键字参数:

ignore_device (bool, 可选) – 如果 True,则忽略规格设备。这用于在调用 TensorDict(..., device="cuda") 中对张量进行分组转换,这会更快。

返回:

与所需张量规格匹配的 torch.Tensor。

expand(*shape)

返回具有扩展形状的新 Spec。

参数:

*shape (tupleint 的可迭代对象) – Spec 的新形状。必须与当前形状可广播:其长度必须至少与当前形状长度一样长,并且其最后的值也必须兼容;即,只有当当前维度为单例时,它们才能与当前维度不同。

flatten(start_dim: int, end_dim: int) T

展平 TensorSpec

有关此方法的更多信息,请查看 flatten()

classmethod implements_for_spec(torch_function: Callable) Callable

为 TensorSpec 注册 torch 函数覆盖。

abstract index(index: Union[int, Tensor, ndarray, slice, List], tensor_to_index: torch.Tensor | tensordict.base.TensorDictBase) torch.Tensor | tensordict.base.TensorDictBase

索引输入张量。

参数:
  • index (int, torch.Tensor, slicelist) – 张量的索引

  • tensor_to_index – 要索引的张量

返回:

索引张量

is_in(val: Tensor) bool

如果值 val 可能由 TensorSpec 生成,则返回 True,否则返回 False

更准确地说,is_in 方法检查值 val 是否在 space 属性(范围)定义的限制内,以及 dtypedeviceshape 以及潜在的其他元数据是否与规格的元数据匹配。如果任何这些检查失败,is_in 方法将返回 False

参数:

val (torch.Tensor) – 要检查的值。

返回:

布尔值,指示值是否属于 TensorSpec 范围。

make_neg_dim(dim: int) T

将特定维度转换为 -1

property ndim: int

规格形状的维度数。

len(spec.shape) 的快捷方式。

ndimension() int

规格形状的维度数。

len(spec.shape) 的快捷方式。

one(shape: Optional[Size] = None) torch.Tensor | tensordict.base.TensorDictBase

返回范围内的填充为 1 的张量。

注意

即使不能保证 1 属于规格域,当违反此条件时,此方法也不会引发异常。one 的主要用例是生成空数据缓冲区,而不是有意义的数据。

参数:

shape (torch.Size) – 填充为 1 的张量的形状

返回:

在 TensorSpec 范围内采样的填充为 1 的张量。

ones(shape: Optional[Size] = None) torch.Tensor | tensordict.base.TensorDictBase

代理到 one()

project(val: torch.Tensor | tensordict.base.TensorDictBase) torch.Tensor | tensordict.base.TensorDictBase

如果输入张量不在 TensorSpec 范围内,它会使用一些定义的启发式方法将其映射回范围。

参数:

val (torch.Tensor) – 要映射到范围的张量。

返回:

属于 TensorSpec 范围的 torch.Tensor。

rand(shape: Optional[Size] = None) Tensor

返回规格定义的空间中的随机张量。

除非范围是无界的,否则将在空间上均匀完成采样,在这种情况下,将绘制正态值。

参数:

shape (torch.Size) – 随机张量的形状

返回:

在 TensorSpec 范围内采样的随机张量。

reshape(*shape) T

重塑 TensorSpec

有关此方法的更多信息,请查看 reshape()

sample(shape: Optional[Size] = None) torch.Tensor | tensordict.base.TensorDictBase

返回规格定义的空间中的随机张量。

有关详细信息,请参阅 rand()

squeeze(dim: Optional[int] = None)

返回一个新的 Spec,其中删除了大小为 1 的所有维度。

当给出 dim 时,仅在该维度上执行 squeeze 操作。

参数:

dim (intNone) – 要应用 squeeze 操作的维度

to(dest: Union[dtype, device, str, int]) Bounded

将 TensorSpec 转换为设备或 dtype。

如果没有进行任何更改,则返回相同的规格。

to_numpy(val: torch.Tensor | tensordict.base.TensorDictBase, safe: Optional[bool] = None) numpy.ndarray | dict

返回输入张量的 np.ndarray 对应项。

这旨在成为 encode() 的逆运算。

参数:
  • val (torch.Tensor) – 要转换为 numpy 的张量。

  • safe (bool) – 布尔值,指示是否应根据规格的域对值执行检查。默认为 CHECK_SPEC_ENCODE 环境变量的值。

返回:

一个 np.ndarray。

type_check(value: Tensor, key: Optional[NestedKey] = None) None

根据 TensorSpec dtype 检查输入值 dtype,如果它们不匹配,则引发异常。

参数:
  • value (torch.Tensor) – 要检查 dtype 的张量。

  • key (str, 可选) – 如果 TensorSpec 具有键,则将根据指示键指向的规格检查值 dtype。

unflatten(dim: int, sizes: Tuple[int]) T

取消展平 TensorSpec

有关此方法的更多信息,请查看 unflatten()

unsqueeze(dim: int)

返回一个新的 Spec,其中增加了一个单例维度(在 dim 指示的位置)。

参数:

dim (intNone) – 要应用 unsqueeze 操作的维度。

view(*shape) T

重塑 TensorSpec

有关此方法的更多信息,请查看 reshape()

zero(shape: Optional[Size] = None) torch.Tensor | tensordict.base.TensorDictBase

返回范围内的填充为零的张量。

注意

即使不能保证 0 属于规格域,当违反此条件时,此方法也不会引发异常。zero 的主要用例是生成空数据缓冲区,而不是有意义的数据。

参数:

shape (torch.Size) – 填充为零的张量的形状

返回:

在 TensorSpec 范围内采样的填充为零的张量。

zeros(shape: Optional[Size] = None) torch.Tensor | tensordict.base.TensorDictBase

代理到 zero()

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取面向初学者和高级开发者的深入教程

查看教程

资源

查找开发资源并获得问题解答

查看资源