prepare_layer_dropout¶
- torchtune.modules.prepare_layer_dropout(layers: Union[ModuleList, Iterable[Module]], prob_max: float = 0.0, prob_layer_scale: Optional[ScaleType] = ScaleType.UNIFORM, layers_str: Optional[str] = None, disable_on_eval: Optional[bool] = True) None [source]¶
通过使用 ModuleLayerDropoutWrapper 包装每个层来准备模型的层进行层级丢弃。此函数接收层列表、丢弃层的最大概率、层级丢弃概率的缩放类型、指定要应用丢弃的层的字符串以及一个布尔值,指示在评估期间是否禁用丢弃。然后它会就地使用 ModuleLayerDropoutWrapper 包装模型的每个层,该包装器会将层级丢弃应用于输入张量。
- 参数:
layers (Union[torch.nn.ModuleList, Iterable[torch.nn.Module]]) – 要准备进行层级丢弃的层列表。
prob_max (float) – 丢弃层的最大概率。默认为 0.0。
prob_layer_scale (Optional[ScaleType]) – 跨层丢弃概率的缩放类型。默认为 ScaleType.UNIFORM。
layers_str (Optional[str]) – 指定要应用丢弃的层的字符串。默认为 None,表示应用于所有层。
disable_on_eval (Optional[bool]) – 是否在评估期间禁用丢弃。默认为 True。
- 返回值:
None
示例
>>> import torch >>> from torch import nn >>> # Define a simple model >>> class MyModel(nn.Module): ... def __init__(self): ... super().__init__() ... self.layers = nn.ModuleList([ ... nn.Linear(5, 3), ... nn.Linear(3, 2), ... nn.Linear(2, 1), ... nn.Linear(1, 2), ... nn.Linear(2, 3), ... ]) ... ... def forward(self, x): ... for layer in self.layers: ... x = layer(x) ... return x >>> model = MyModel() >>> # Apply layer dropout uniformly to all layers >>> prepare_layer_dropout(model.layers, prob_max=0.2, prob_layer_scale=ScaleType.UNIFORM) >>> # Apply layer dropout every other layer, as described in LayerDrop paper (Fan et al., https://arxiv.org/abs/1909.11556v1) >>> prepare_layer_dropout(model.layers, prob_max=0.2, prob_layer_scale=ScaleType.UNIFORM, layers_str="::2") >>> # Apply layer dropout that increases linearly across layers, as described in Progressive Layer Dropout paper (Zhang et al., https://arxiv.org/abs/2010.13369) >>> prepare_layer_dropout(model.layers, prob_max=0.2, prob_layer_scale=ScaleType.LINEAR) >>> # Apply layer dropout that increases exponentially across layers, as described in LayerSkip paper (Elhoushi et al., https://arxiv.org/abs/2404.16710) >>> prepare_layer_dropout(model.layers, prob_max=0.2, prob_layer_scale=ScaleType.EXP)