快捷方式

TransformerCrossAttentionLayer

class torchtune.modules.TransformerCrossAttentionLayer(attn: MultiHeadAttention, mlp: Module, *, ca_norm: Optional[Module] = None, mlp_norm: Optional[Module] = None, ca_scale: Optional[Module] = None, mlp_scale: Optional[Module] = None)[source]

遵循与 TransformerSelfAttentionLayer 相同约定的交叉注意力 Transformer 层。在注意力 **和** FF 层之前应用归一化。

参数:
  • attn (MultiHeadAttention) – 注意力模块。

  • mlp (nn.Module) – 前馈模块。

  • ca_norm (Optional[nn.Module]) – 在交叉注意力之前应用的归一化。

  • mlp_norm (Optional[nn.Module]) – 在前馈层之前应用的归一化。

  • ca_scale (Optional[nn.Module]) – 用于缩放交叉注意力输出的模块。

  • mlp_scale (Optional[nn.Module]) – 用于缩放前馈输出的模块。

引发:

AssertionError – 如果 attn.pos_embeddings 已设置。

property cache_enabled: bool

检查键值缓存是否已设置。

forward(x: Tensor, *, encoder_input: Optional[Tensor] = None, encoder_mask: Optional[Tensor] = None, **kwargs: Dict) Tensor[source]
参数:
  • x (torch.Tensor) – 形状为 [batch_size x seq_length x embed_dim] 的输入张量

  • encoder_input (Optional[torch.Tensor]) – 来自编码器的可选输入嵌入。形状 [batch_size x token_sequence x embed_dim]

  • encoder_mask (Optional[torch.Tensor]) – 定义令牌和编码器嵌入之间关系矩阵的布尔张量。在位置 i,j 处的 True 值表示令牌 i 可以关注解码器中的嵌入 j。掩码的形状为 [batch_size x token_sequence x embed_sequence]。默认值为 None。

  • **kwargs (Dict) – 与自我注意力无关的 transformer 层输入。

返回:

输出张量与输入张量形状相同。

[batch_size x seq_length x embed_dim]

返回类型:

torch.Tensor

reset_cache()[source]

重置键值缓存。

setup_cache(batch_size: int, dtype: dtype, *, encoder_max_seq_len: int, decoder_max_seq_len: int) None[source]

设置用于注意力计算的键值缓存。

参数:
  • batch_size (int) – 缓存的批次大小。

  • dtype (torch.dpython:type) – 缓存的数据类型。

  • encoder_max_seq_len (int) – 缓存的最大序列长度。

  • decoder_max_seq_len (int) – 此参数在此层中被忽略。

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取针对初学者和高级开发者的深入教程

查看教程

资源

查找开发资源并获得问题的答案

查看资源