快捷方式

lora_gemma_2b

torchtune.models.gemma.lora_gemma_2b(lora_attn_modules: List[Literal['q_proj', 'k_proj', 'v_proj', 'output_proj']], apply_lora_to_mlp: bool = False, lora_rank: int = 8, lora_alpha: float = 16, lora_dropout: float = 0.0, use_dora: bool = False, quantize_base: bool = False) TransformerDecoder[源代码]

用于创建启用 LoRA 的 Gemma 2B 模型的构建器。

Gemma 的默认值与 gemma_2b() 中的相同,而 LoRA 的默认参数基于 https://github.com/tloen/alpaca-lora/blob/8bb8579e403dc78e37fe81ffbb253c413007323f/finetune.py#L41-L43

参数:
  • lora_attn_modules (List[LORA_ATTN_MODULES]) – 每个自注意力块中应将 LoRA 应用于哪些线性层的列表。选项为 {"q_proj", "k_proj", "v_proj", "output_proj"}

  • apply_lora_to_mlp (bool) – 是否将 LoRA 应用于每个 Transformer 层中的 MLP。默认值:False

  • lora_rank (int) – 每个低秩近似的秩

  • lora_alpha (float) – 低秩近似的缩放因子

  • lora_dropout (float) – 低秩近似的 dropout 概率。默认值:0.0

  • use_dora (bool) – 将 LoRA 权重分解为幅度和方向,如“DoRA:权重分解低秩自适应”中所述 (https://arxiv.org/abs/2402.09353).

  • quantize_base (bool) – 是否量化基础模型权重

返回值:

应用 LoRA 的 Gemma 2B 模型的实例化

返回类型:

TransformerDecoder

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源