快捷方式

SoftUpdate

class torchrl.objectives.SoftUpdate(loss_module: Union['DQNLoss', 'DDPGLoss', 'SACLoss', 'REDQLoss', 'TD3Loss'], *, eps: float = None, tau: Optional[float] = None)[source]

用于 Double DQN/DDPG 中目标网络软更新的类。

这在论文“CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING”中提出,https://arxiv.org/pdf/1509.02971.pdf

必须指定且仅指定一个衰减因子(tau 或 eps)。

参数:
  • loss_module (DQNLoss or DDPGLoss) – 需要更新目标网络的损失模块。

  • eps (scalar) –

    更新方程中的 epsilon:.. math

    \theta_t = \theta_{t-1} * \epsilon + \theta_t * (1-\epsilon)
    

    tau 互斥。

  • tau (scalar) – Polyak tau。它等于 1-eps,并与 eps 互斥。

文档

查阅全面的 PyTorch 开发者文档

查看文档

教程

获取面向初学者和高级开发者的深度教程

查看教程

资源

查找开发资源并获得问题解答

查看资源