DDPGLoss
- class torchrl.objectives.DDPGLoss(*args, **kwargs)[source]
DDPG 损失类。
- 参数:
actor_network (TensorDictModule) – 策略运算符。
value_network (TensorDictModule) – Q 值运算符。
loss_function (str) – 值差异的损失函数。可以是 “l1”、“l2” 或 “smooth_l1” 之一。
delay_actor (bool, optional) – 是否将目标 actor 网络与用于数据收集的 actor 网络分离。默认为
False
。delay_value (bool, optional) – 是否将目标 value 网络与用于数据收集的 value 网络分离。默认为
True
。separate_losses (bool, optional) – 如果为
True
,则策略和评论家之间共享的参数将仅在策略损失上进行训练。默认为False
,即梯度会传播到策略损失和评论家损失的共享参数。reduction (str, optional) – 指定应用于输出的 reduction 方式:
"none"
|"mean"
|"sum"
。"none"
:不应用 reduction,"mean"
:输出的总和将除以输出中的元素数量,"sum"
:输出将被求和。默认值:"mean"
。
示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.tensordict_module.actors import Actor, ValueOperator >>> from torchrl.objectives.ddpg import DDPGLoss >>> from tensordict import TensorDict >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> actor = Actor(spec=spec, module=nn.Linear(n_obs, n_act)) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> value = ValueOperator( ... module=module, ... in_keys=["observation", "action"]) >>> loss = DDPGLoss(actor, value) >>> batch = [2, ] >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": spec.rand(batch), ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1), ... ("next", "observation"): torch.randn(*batch, n_obs), ... }, batch) >>> loss(data) TensorDict( fields={ loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), pred_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), pred_value_max: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value_max: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此类也兼容非基于 tensordict 的模块,并且可以在不使用任何与 tensordict 相关的原语的情况下使用。在这种情况下,预期的关键字参数为:
["next_reward", "next_done", "next_terminated"]
+ actor_network 和 value_network 的 in_keys。返回值是张量元组,顺序如下:["loss_actor", "loss_value", "pred_value", "target_value", "pred_value_max", "target_value_max"]
示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.tensordict_module.actors import Actor, ValueOperator >>> from torchrl.objectives.ddpg import DDPGLoss >>> _ = torch.manual_seed(42) >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> actor = Actor(spec=spec, module=nn.Linear(n_obs, n_act)) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> value = ValueOperator( ... module=module, ... in_keys=["observation", "action"]) >>> loss = DDPGLoss(actor, value) >>> loss_actor, loss_value, pred_value, target_value, pred_value_max, target_value_max = loss( ... observation=torch.randn(n_obs), ... action=spec.rand(), ... next_done=torch.zeros(1, dtype=torch.bool), ... next_terminated=torch.zeros(1, dtype=torch.bool), ... next_observation=torch.randn(n_obs), ... next_reward=torch.randn(1)) >>> loss_actor.backward()
输出键也可以使用
DDPGLoss.select_out_keys()
方法进行过滤。示例
>>> loss.select_out_keys('loss_actor', 'loss_value') >>> loss_actor, loss_value = loss( ... observation=torch.randn(n_obs), ... action=spec.rand(), ... next_done=torch.zeros(1, dtype=torch.bool), ... next_terminated=torch.zeros(1, dtype=torch.bool), ... next_observation=torch.randn(n_obs), ... next_reward=torch.randn(1)) >>> loss_actor.backward()
- forward(tensordict: TensorDictBase = None) TensorDict [source]
计算给定从回放缓冲区采样的 tensordict 的 DDPG 损失。
- 此函数还将写入一个 “td_error” 键,优先回放缓冲区可以使用该键来分配
tensordict 中项目的优先级。
- 参数:
tensordict (TensorDictBase) – 具有键 [“done”, “terminated”, “reward”] 以及 actor 和 value 网络的 in_keys 的 tensordict。
- 返回:
包含 DDPG 损失的 2 个张量的元组。
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[source]
价值函数构造器。
如果需要非默认的价值函数,则必须使用此方法构建。
- 参数:
value_type (ValueEstimators) – 一个
ValueEstimators
枚举类型,指示要使用的价值函数。如果未提供,则将使用default_value_estimator
属性中存储的默认值。生成的价值估计器类将注册在self.value_type
中,以便将来进行改进。**hyperparams – 用于价值函数的超参数。如果未提供,将使用
default_value_kwargs()
指示的值。
示例
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)