SelectTransform¶
- 类 torchrl.envs.transforms.SelectTransform(*selected_keys: NestedKey, keep_rewards: bool = True, keep_dones: bool = True)[源代码]¶
从输入 tensordict 中选择键。
- 通常,应首选
ExcludeTransform
:此变换还会 选择“action”(或 input_spec 中的其他键)、“done”和“reward”键,但可能还需要其他键。
- 参数:
*selected_keys (NestedKey 的可迭代对象) – 要选择的键的名称。如果键不存在,则会被忽略。
- 关键字参数:
keep_rewards (bool, 可选的) – 如果为
False
,如果要保留奖励键,则必须提供。默认为True
。keep_dones (bool, 可选的) – 如果为
False
,如果要保留 done 键,则必须必须提供。默认为True
。
示例
>>> import gymnasium >>> from torchrl.envs import GymWrapper >>> env = TransformedEnv( ... GymWrapper(gymnasium.make("Pendulum-v1")), ... SelectTransform("observation", "reward", "done", keep_dones=False), # we leave done behind ... ) >>> env.rollout(3) # the truncated key is now absent TensorDict( fields={ action: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=False), done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False), observation: Tensor(shape=torch.Size([3, 3]), device=cpu, dtype=torch.float32, is_shared=False), reward: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=cpu, is_shared=False), observation: Tensor(shape=torch.Size([3, 3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=cpu, is_shared=False)
- forward(tensordict: TensorDictBase) TensorDictBase ¶
读取输入 tensordict,并对选定的键应用变换。
- 通常,应首选