EndOfLifeTransform¶
- class torchrl.envs.transforms.EndOfLifeTransform(eol_key: NestedKey = 'end-of-life', lives_key: NestedKey = 'lives', done_key: NestedKey = 'done', eol_attribute='unwrapped.ale.lives')[source]¶
从具有 lives 方法的 Gym 环境注册生命周期结束信号。
由 DeepMind 为 DQN 和 co. 提出。 它有助于价值评估。
- 参数:
eol_key (NestedKey, 可选) – 应写入生命周期结束信号的键。默认为
"end-of-life"
。done_key (NestedKey, 可选) – 父环境 done_spec 中的 “done” 键,可以在其中检索 done 值。此键必须是唯一的,并且其形状必须与生命周期结束条目的形状匹配。默认为
"done"
。eol_attribute (str, 可选) – gym 环境中 “lives” 的位置。默认为
"unwrapped.ale.lives"
。支持的属性类型是整数/类数组对象或返回这些值的可调用对象。
注意
此转换应与具有
env.unwrapped.ale.lives
的 gym 环境一起使用。示例
>>> from torchrl.envs.libs.gym import GymEnv >>> from torchrl.envs.transforms.transforms import TransformedEnv >>> env = GymEnv("ALE/Breakout-v5") >>> env.rollout(100) TensorDict( fields={ action: Tensor(shape=torch.Size([100, 4]), device=cpu, dtype=torch.int64, is_shared=False), done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False), reward: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, is_shared=False), terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([100]), device=cpu, is_shared=False), pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False), terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([100]), device=cpu, is_shared=False) >>> eol_transform = EndOfLifeTransform() >>> env = TransformedEnv(env, eol_transform) >>> env.rollout(100) TensorDict( fields={ action: Tensor(shape=torch.Size([100, 4]), device=cpu, dtype=torch.int64, is_shared=False), done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), eol: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), lives: Tensor(shape=torch.Size([100]), device=cpu, dtype=torch.int64, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), end-of-life: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), lives: Tensor(shape=torch.Size([100]), device=cpu, dtype=torch.int64, is_shared=False), pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False), reward: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, is_shared=False), terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([100]), device=cpu, is_shared=False), pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False), terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([100]), device=cpu, is_shared=False)
此转换的典型用法是在损失模块中将 “done” 状态替换为 “end-of-life”。生命周期结束信号未在
done_spec
中注册,因为它不应指示环境重置。示例
>>> from torchrl.objectives import DQNLoss >>> module = torch.nn.Identity() # used as a placeholder >>> loss = DQNLoss(module, action_space="categorical") >>> loss.set_keys(done="end-of-life", terminated="end-of-life") >>> # equivalently >>> eol_transform.register_keys(loss)
- register_keys(loss_or_advantage: LossModule)[source]¶
在损失内的适当位置注册生命周期结束键。
- 参数:
loss_or_advantage (torchrl.objectives.LossModule 或 torchrl.objectives.value.ValueEstimatorBase) – 用于指示生命周期结束键是什么的模块。
- transform_observation_spec(observation_spec)[source]¶
转换观察规范,使结果规范与转换映射匹配。
- 参数:
observation_spec (TensorSpec) – 转换前的规范
- 返回:
转换后的预期规范