快捷方式

EndOfLifeTransform

class torchrl.envs.transforms.EndOfLifeTransform(eol_key: NestedKey = 'end-of-life', lives_key: NestedKey = 'lives', done_key: NestedKey = 'done', eol_attribute='unwrapped.ale.lives')[source]

从具有 lives 方法的 Gym 环境注册生命周期结束信号。

由 DeepMind 为 DQN 和 co. 提出。 它有助于价值评估。

参数:
  • eol_key (NestedKey, 可选) – 应写入生命周期结束信号的键。默认为 "end-of-life"

  • done_key (NestedKey, 可选) – 父环境 done_spec 中的 “done” 键,可以在其中检索 done 值。此键必须是唯一的,并且其形状必须与生命周期结束条目的形状匹配。默认为 "done"

  • eol_attribute (str, 可选) – gym 环境中 “lives” 的位置。默认为 "unwrapped.ale.lives"。支持的属性类型是整数/类数组对象或返回这些值的可调用对象。

注意

此转换应与具有 env.unwrapped.ale.lives 的 gym 环境一起使用。

示例

>>> from torchrl.envs.libs.gym import GymEnv
>>> from torchrl.envs.transforms.transforms import TransformedEnv
>>> env = GymEnv("ALE/Breakout-v5")
>>> env.rollout(100)
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([100, 4]), device=cpu, dtype=torch.int64, is_shared=False),
        done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False),
                reward: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([100]),
            device=cpu,
            is_shared=False),
        pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False),
        terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([100]),
    device=cpu,
    is_shared=False)
>>> eol_transform = EndOfLifeTransform()
>>> env = TransformedEnv(env, eol_transform)
>>> env.rollout(100)
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([100, 4]), device=cpu, dtype=torch.int64, is_shared=False),
        done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        eol: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        lives: Tensor(shape=torch.Size([100]), device=cpu, dtype=torch.int64, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                end-of-life: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                lives: Tensor(shape=torch.Size([100]), device=cpu, dtype=torch.int64, is_shared=False),
                pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False),
                reward: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([100]),
            device=cpu,
            is_shared=False),
        pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False),
        terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([100]),
    device=cpu,
    is_shared=False)

此转换的典型用法是在损失模块中将 “done” 状态替换为 “end-of-life”。生命周期结束信号未在 done_spec 中注册,因为它不应指示环境重置。

示例

>>> from torchrl.objectives import DQNLoss
>>> module = torch.nn.Identity() # used as a placeholder
>>> loss = DQNLoss(module, action_space="categorical")
>>> loss.set_keys(done="end-of-life", terminated="end-of-life")
>>> # equivalently
>>> eol_transform.register_keys(loss)
forward(tensordict: TensorDictBase) TensorDictBase[source]

读取输入 tensordict,并为选定的键应用转换。

register_keys(loss_or_advantage: LossModule)[source]

在损失内的适当位置注册生命周期结束键。

参数:

loss_or_advantage (torchrl.objectives.LossModuletorchrl.objectives.value.ValueEstimatorBase) – 用于指示生命周期结束键是什么的模块。

transform_observation_spec(observation_spec)[source]

转换观察规范,使结果规范与转换映射匹配。

参数:

observation_spec (TensorSpec) – 转换前的规范

返回:

转换后的预期规范

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取面向初学者和高级开发者的深入教程

查看教程

资源

查找开发资源并获得解答

查看资源