BurnInTransform¶
- class torchrl.envs.transforms.BurnInTransform(modules: Sequence[TensorDictModuleBase], burn_in: int, out_keys: Optional[Sequence[NestedKey]] = None)[source]¶
转换以部分预热数据序列。
当循环状态不可用时,此转换对于获取最新的循环状态很有用。它从采样的顺序数据切片沿时间维度预热若干步,并返回剩余的数据序列,其中预热数据在其初始时间步中。此转换旨在用作回放缓冲区转换,而不是环境转换。
- 参数:
modules (TensorDictModule 序列) – 用于预热数据序列的模块列表。
burn_in (int) – 要预热的时间步数。
out_keys (NestedKey 序列, 可选) – 目标键。默认为
` (指向下一个时间步的所有模块 out_keys (例如,如果 "hidden") –
("next" –
module). ("hidden")` 是) –
注意
此转换期望输入 TensorDicts,其最后一维是时间维度。它还假设所有提供的模块都可以处理顺序数据。
示例
>>> import torch >>> from tensordict import TensorDict >>> from torchrl.envs.transforms import BurnInTransform >>> from torchrl.modules import GRUModule >>> gru_module = GRUModule( ... input_size=10, ... hidden_size=10, ... in_keys=["observation", "hidden"], ... out_keys=["intermediate", ("next", "hidden")], ... ).set_recurrent_mode(True) >>> burn_in_transform = BurnInTransform( ... modules=[gru_module], ... burn_in=5, ... ) >>> td = TensorDict({ ... "observation": torch.randn(2, 10, 10), ... "hidden": torch.randn(2, 10, gru_module.gru.num_layers, 10), ... "is_init": torch.zeros(2, 10, 1), ... }, batch_size=[2, 10]) >>> td = burn_in_transform(td) >>> td.shape torch.Size([2, 5]) >>> td.get("hidden").abs().sum() tensor(86.3008)
>>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer >>> buffer = TensorDictReplayBuffer( ... storage=LazyMemmapStorage(2), ... batch_size=1, ... ) >>> buffer.append_transform(burn_in_transform) >>> td = TensorDict({ ... "observation": torch.randn(2, 10, 10), ... "hidden": torch.randn(2, 10, gru_module.gru.num_layers, 10), ... "is_init": torch.zeros(2, 10, 1), ... }, batch_size=[2, 10]) >>> buffer.extend(td) >>> td = buffer.sample(1) >>> td.shape torch.Size([1, 5]) >>> td.get("hidden").abs().sum() tensor(37.0344)